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Abstract: Legged robots are meant to autonomously navigate unstructured environments for ap-
plications like search and rescue, inspection, or maintenance. In autonomous navigation, a close
relationship between locomotion and perception is crucial; the robot has to perceive the environment
and detect any change in order to autonomously make decisions based on what it perceived. One
main challenge in autonomous navigation for legged robots is locomotion over unstructured terrains.
In particular, when the ground is slippery, common control techniques and state estimation algo-
rithms may not be effective, because the ground is commonly assumed to be non-slippery. This paper
addresses the problem of slip detection, a first fundamental step to implement appropriate control
strategies and perform dynamic whole-body locomotion. We propose a slip detection approach,
which is independent of the gait type and the estimation of the position and velocity of the robot in
an inertial frame, that is usually prone to drift problems. To the best of our knowledge, this is the first
approach of a quadruped robot slip detector that can detect more than one foot slippage at the same
time, relying on the estimation of measurements expressed in a non-inertial frame. We validate the
approach on the 90 kg Hydraulically actuated Quadruped robot (HyQ) from the Istituto Italiano di
Tecnologia (IIT), and we compare it against a state-of-the-art slip detection algorithm.

Keywords: legged robots; perception; slip detection

1. Introduction

We live in an era of rovers on Mars [1], drones surveying Earth (and Mars [2]), and self-
driving cars. Similarly, legged robots have gained increasing popularity over the past few
decades. They have the potential to operate in unstructured and dangerous environments,
and to traverse difficult terrain where existing vehicles cannot go.

Legged robotics has seen significant progress in recent years. Robots have acquired
amazing capabilities and some of them have reached a point where they can actually leave
lab environments and carry out tasks in real-world scenarios. For example, the humanoid
robot Atlas of Boston Dynamics [3], has recently demonstrated impressive athletic behav-
iors by performing parkour [4]. On the other hand, typical biped robots lack locomotion
stability in unstructured environments, whereas quadruped robots have good mobility
and stability. Among quadruped robots, the Hydraulically actuated Quadruped robots
HyQ and HyQReal [5,6] were designed at the IIT (Genoa) to study highly dynamic mo-
tions (e.g., running, hopping, jumping), and to navigate over rough terrain. HyQReal
demonstrated a strong heavy-duty ability by pulling a small airplane in an experiment [7].
The research group of Swiss Federal Institute of Technology (Zurich) and Anybotics AG
developed the quadruped robot ANYmal [8], for autonomous operation in challenging
environments [9]. Massachusetts Institute of Technology (MIT) introduced the electrically
actuated quadruped robot MIT Cheetah [10] and later MIT Cheetah 3 [11] to study high-
speed quadrupedal locomotion. One of the most popular quadruped robots is Spot [12],
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constructed by Boston Dynamics. Spot is a versatile quadruped robot, suitable for many ap-
plications. It demonstrated great ability in navigating several kinds of terrain while sensing
the environment. Unitree Robotics developed Aliengo [13] and other electric quadrupeds
that demonstrated excellent athletic performance, such as fast running, jumping, and climb-
ing. A recent survey paper [14] presents the results obtained with some of the best-known
quadruped robots, including Spot, ANYmal, and HyQ.

More recently, the researchers of the Robotic Systems Lab, ETH Zurich, Switzerland,
presented a controller tuned by reinforcement learning [15]. Their controller was based on a
neural network that operates proprioceptive signals. Despite having performed simulations
and training on rigid and not very uncertain terrain, thanks to reinforcement learning, once
the robot (ANYmal) was taken to real, uncertain, and rich-in-vegetation terrain, it was
able to complete the required tasks. It also demonstrated a certain robustness to slippage,
despite not having implemented a real slip detection.

It is clear that the improvements achieved on a hardware and control level go hand
in hand with the perceptive capabilities. As part of this, state estimation adopts a central
role since estimated quantities are prerequisites for other tasks such as balance control,
trajectory planning, or target tracking [16].

To move out of research labs into the real-world, legged robots are expected to tra-
verse terrains that are usually dynamic, unexplored, and unknown. The core problem
is that the terrains that the robots have to traverse introduce a large amount of uncer-
tainty. The robot has to be terrain-aware, that is to say, able to perceive and understand the
surrounding terrain, and to take decisions based on that. Proprioceptive Terrain Aware
Locomotion (PTAL) relies on internal robot measurements, using information acquired by
proprioceptive sensors. PTAL strategies are effective in many scenarios where it is difficult
to obtain visual feedback (e.g., foggy areas). Common PTAL strategies are used to localize
and detect contacts. Some techniques rely on the joint position, velocity, and/or torque
measurements to detect foot-ground contacts, or localize other possible contacts with the
environment [17–19]. Furthermore, PTAL strategies are used to deduce the physical and
geometrical properties of the terrain and adapt accordingly [20].

This work focuses on PTAL, applied at the level of state estimation, and investigates
locomotion on slippery terrain, an open and challenging research problem in dynamic
locomotion. The final goal is to develop a new algorithm for multi-leg slip detection during
motion, making use of proprioceptive sensors. The development of recovery strategies
once slippage is detected, is part of our future work.

1.1. Related Work on Slip Detection and Recovery

Some work dealt with slip detection and recovery by focusing on the design of the
robot’s foot. For example, in [21] an anti-skid foot designed on a two-legged planar robot is
introduced. The robot’s foot has two types of foot pads: a primary foot pad with rubber,
and a secondary (complementary) foot pad with anchoring spines. The foot switches from
the first to the second when the primary foot pad slips.

A method to prevent a slip event is described in [22]. The authors presented a MEMS
slip sensor that can be attached to a foot of a legged robot to measure the slipperiness at the
time of the collision between the foot and the ground, in order to prevent the slippage in
static and dynamic situations.

A study on detection of “absence of slip in robot hand and feet” was made in [23],
by collecting data from independent 3-axis MEMS accelerometers connected to pads, that
could be used both for gripping configuration and for foot configuration. Based on the
fact that, in absence of slip, the sensor signals are highly correlated, the authors developed
an algorithm of non-slip detection, able to make a fast non-slip/slip decision. The results
showed that the robustness of the algorithm is lower in the case of foot configuration,
probably due to a greater loss of the signals acquired during the different contacts.

The abovementioned results demonstrate that sensor-based slip detection approaches
are of limited applicability to legged robots, because they need a force/torque sensor to
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be attached to the foot tip. Due to the repetitive impacts with the ground, in the long run,
this can result in damage to the sensor. Furthermore, during locomotion, the touchdown
event can create discontinuities in the force signal and jeopardize the detection. Conversely,
a detection strategy based on kinematics is preferable in the context of legged robots where
ground impacts are the order of the day.

One of the prior works on slip detection and recovery is from [24]. Here the authors
proposed to change the robot’s gait parameters (gait frequency and stride length) when
approaching slippery surfaces (long-term strategy), and to instantaneously add a force to
have the Ground Reaction Force (GRF) back in the friction cone (short-term strategy). This
approach is based on the assumption that the normal force is always correctly estimated.
The method was tested on the quadruped robot TITAN-VIII.

For the bipedal robot HRP-2, a slip observer detecting skids occurring at walking
on slippery floor was formulated [25]. To realize balance control, a reactive strategy was
achieved by regulating the desired footholds to compensate for the torso rotation caused
by the slippage.

The implementation of an Invariant Extended Kalman Filter (InEKF) that fuses inertial,
velocity measurements from leg kinematics and from a tracking camera, for legged robots
operating in slippery environments, is proposed in [26]. The authors experimentally
validate the proposed method on a Cassie bipedal robot walking over slippery terrain.

In [16] a state estimation approach based on kinematic velocity measurements at the
ground contacts is presented. The obtained information is fused with measurements from
an onboard IMU by means of an Unscented Kalman Filter (UKF), implemented on the
legged robot StarlETH. This filter estimates roll and pitch angles as well as the velocities of
the robot, it is robust to a certain amount of foot slippage, and enables dynamic locomotion
over uneven and unstable terrain.

In [27] the authors introduce a methodology for slip detection and estimation of the
friction parameters, plus a recovery strategy, which exploits the capabilities of a whole-body
controller, implemented for HyQ locomotion, which optimizes for the GRFs. The estimation
makes use only of proprioceptive sensors. The detection approach is fully described in
Section 3 since it is used as a baseline for the novel algorithm presented in this paper.

In [28] a probabilistic approach for contact and slip estimation, based on a Hidden
Markov Model is developed and tested on ANYmal walking on frozen ground. A slip
recovery approach relied on invasive impedance control and friction modulation. The au-
thors performed field tests on frozen ground, verifying that the presented approach could
successfully stabilize ANYmal.

1.2. Contributions

This paper focuses on proposing a new approach for slip detection. This is the first
essential step to implement a robust controller that allows the robot to navigate on slippery
ground. Once the robot detects slippage, it can trigger a reflex action and adapt its motion
trajectories to stop slipping.

Previous works on slip detection rely on estimating the robot states in an inertial
frame (world frame), in particular the foot velocity being constant in the world frame. These
measurements can be influenced by errors in the state estimation, which can result in
false positives in slip detection. Moreover, some of them rely on the integration of the
acceleration measured by the IMU. Integrating acceleration is prone to drift and can cause
divergence issues. Our method overcomes the challenges of prior work on slip detection
by not relying on the robot state estimates in an inertial frame. Instead, our method relies
on estimating the velocity and the position of each foot with respect to the body of the
robot (base frame), in order to avoid drift and divergence issues that arise when using the
world frame.

Furthermore, we propose a kinematic-based algorithm that is independent of the type
of gait. Our approach can independently detect the slippage of one or more legs at the
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same time. This allows us to detect slippage if the robot is walking with a trot gait (two
legs are swinging at the same time), or with a crawling gait (only one leg is swinging).

Additionally, we validated the proposed approach on the 90 kg Hydraulically actuated
Quadruped (HyQ) robot, and we compared it against a state-of-the-art slip detection
algorithm [27].

1.3. Outline

The rest of this paper is structured as follows: Section 2 gives a system overview of
HyQ and the locomotion framework used in this work. Section 3 gives a recap of the work
presented in [27], as well as the proposed algorithm of slip detection. Section 4 shows
the simulation results. Section 5 shows the results obtained in experiments, and finally
Section 6 is dedicated to conclusions and future works.

2. Modelling and Sensing
2.1. Robot Overview

HyQ (Figure 1a) is a fully torque-controlled hydraulically actuated quadruped robot
developed at the IIT. HyQ stands 1 m tall and weighs approximately 90 kg. HyQ consists of
a torso and four identical legs, arranged in the forward/backward configuration, with the
front and hind knees pointing to each other. It has 12 torque-controlled joints powered
by hydraulic actuators. The actuated joint are: (i) Hip Abduction/Adduction (HAA),
(ii) Hip Flexion/Extension (HFE), (iii) Knee Flexion/Extension (KFE). For more technical
specification the reader can refer to [5].

(a) (b)

x

y

LFLH

RFRH

(c)

X

Z

X

Z

Figure 1. (a) HyQ robot, (b,c): location of robot base frame (blue) and world frame (red). LF, RF, LH,
and RH are the Left-Front, Right-Front, Left-Hind, and Right-Hind legs, respectively.

We define the reference frames as shown in Figure 1b,c: the base frame B located at
the geometric center of the trunk (robot torso) and the world frameW , an inertial frame
coinciding with the base frame in the starting position, considering an offset along the
z-axis of exactly the height of the robot.

2.2. Sensors Overview

HyQ is equipped with a six-axis IMU on the trunk, and every joint contains an encoder
and torque sensor. The encoders are used to measure the joint position qi ∈ R and joint
speed q̇i ∈ R. The torque sensors directly measure joint torque τi ∈ R. The bias and noise
of the measured values are assumed slowly time-varying, with zero mean and Gaussian
distribution. HyQ is equipped with proprioceptive and exteroceptive sensors. For this
work, the information is obtained exclusively from proprioceptive sensors data. A complete
description of the sensors the robot is equipped with is reported in [29].

2.3. Dynamic Model

The dynamics of the robot is obtained starting from the assumption that all of the
external forces are exerted on the point-like feet. When a foot is in the swing phase (no
foot-ground contact) it is assumed that no external forces are exerted on it. When the contact
occurs, the foot is in stance phase, and the ground exerts forces on it (GRFs). The dynamics
model is given by:

M(x̄) ¨̄x + h(x̄, ˙̄x) = τ̄ + JT Fgr f (1)
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where x̄ = [xTηTqT ]T ∈ R18 is the generalized robot state, ˙̄x ∈ R18 and ¨̄x ∈ R18 are the
corresponding generalized velocities and accelerations, x ∈ R3 and η ∈ R3 are the position
and the attitude of the base, q ∈ R12 is the vector of joint angles (3 DoF for each leg),
M ∈ R18×18 is the joint-space inertia matrix, h ∈ R18 is the vector of Coriolis, centrifugal
and gravity forces, τ̂ = [0 τ] ∈ R18 where τ ∈ R12 is the vector of joint torques, and finally
Fgrf ∈ R12 is the vector of GRFs, while J ∈ R18×12 is the floating base Jacobian.

In this paper, estimating the contact states of the feet (whether a foot is in contact with
the ground or not) is essential. To estimate the contact states α ∈ R4, we first estimate
the ground reaction forces as detailed in [30]. Then, the contact state αi for every leg i is a
boolean variable whose value is equal to 1 when the GRFs exceed a certain threshold value,
and is equal to 0 otherwise. In detail, the contact state αi is defined as:

αi =

{
1 Fgrf,i > Fmin

0 otherwise
(2)

where Fmin is the threshold value (50 N in the experiments of Section 5), and Fgrf,i ∈ R3 is
the GRF of the leg i.

2.4. Locomotion Framework

The locomotion framework used in this work is based on the Reactive Controller
Framework (RCF) described in [31]. The RCF comprises four main blocks. The first block
is motion generation which takes user-defined inputs and outputs body and leg references,
and adjusts them with reflex strategies. The second block is Whole-Body Control (WBC) that
tracks the references from the motion generation block and outputs optimal torques [32].
The third block is joint-level control that tracks the optimal torques from the WBC block
and outputs the desired joint torques to send them to the robot. The fourth block is
state estimation that estimates the robot (body, joint, and contact) states from the sensor
measurement of the robot and sends them to the motion generation and the WBC blocks.
An overview of the locomotion framework is shown in Figure 2.

leg references

body references optimal 

torquesWhole-Body

Control

Motion

Generation
Joint-Level

Control

desired

joint torques

State Estimation

User

Input

Figure 2. Overview of the locomotion framework.

HyQ has two main locomotion behaviors [33]: a dynamically stable trot and a crawl-
gait. During the trotting the robot moves its legs in pairs. Trotting allows fast locomotion
over regular terrain with varying inclinations. The crawl-gait is slow locomotion, more suit-
able for irregular terrains. The crawling pattern is LH to LF to RH to RF. For the simulation
and experimental tests (Sections 4 and 5) we used both these methods of locomotion.

3. Slip Detection Method

In this section, we briefly introduce a state-of-the-art algorithm [27], used as a baseline
approach for comparison. Then, after explaining the drawbacks of the baseline approach,
we explain our proposed approach.

3.1. Baseline Approach

The baseline approach [27] proposed two different strategies to detect slippages. These
strategies were based on the robot kinematics, particularly at the velocity level. The first
strategy detects the slippage of only one leg, and is based on estimating the stance feet
velocities expressed in the body frame ẋb

f . The second strategy detects the slippage of two
or more legs, and is based on estimating the stance feet velocities expressed in the world
frame ẋw

f .
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3.1.1. One Leg Slip Detection

For the first strategy, the authors propose to compare the values of stance feet velocities
in the body frame ẋb

f and discriminate the outlier with appropriate statistical tools. At each
control loop the median of the norms of the stance feet velocities is computed. A slipping
leg has a velocity that deviates the most from the median beyond a certain threshold ε, that
is experimentally tuned. Each leg has an associated flag, that is switched to true if a slip
is detected.

3.1.2. Multiple Leg Slip Detection

A more complicated situation is when two or more legs are slipping at the same time.
In this case, it is hard to detect with the median approach which legs are slipping or in
stance. Therefore, the authors proposed a second strategy, that is checking which of the
feet velocities ẋ f are kinematically consistent with the base velocity ẋb

b. The most intuitive
way is to verify that the Cartesian velocities of the stance feet ẋw

f are all zero in an inertial
frameW . ẋw

f can be written as follows:

0 ' ẋw
f = ẋw

b + Rw
b (ẋb

f + ω× xb
f ) (3)

where Rw
b ∈ SO(3) is the rotation matrix representing the orientation of the robot base

(i.e., from frame B to frame W). xb
f ∈ R3, ẋb

f ∈ R3 are the position and velocity of the
foot in B, respectively, ω is the angular velocity, estimated by an on-board IMU sensor,
while ẋw

b ∈ R3 is the base linear velocity inW . According to (3), computing ẋw
f requires an

estimation of the base linear velocity ẋw
b . For this purpose, a short-time integration of the

base linear acceleration measured by the IMU accelerometers is executed.

3.1.3. Drawbacks of the Baseline Method

The slip detection approaches described above have some downsides. They were
tested only in simulation, using crawl as gait. The one leg slip detection method, cannot be
applied to different gaits, e.g., trotting, where the legs have pairwise different velocities and
the accuracy might deteriorate. On the other hand, the multiple leg slip detection method
relies on velocities expressed in the world frame. ẋw

b is influenced by errors in the state
estimation, which can result in false positives in slip detection. Moreover, this approach
relies on the integration of the acceleration measured by the IMU. As already explained
in Section 1.2, integrating acceleration is prone to drift and it is fundamental to perform a
short-time integration to avoid divergence issues. The authors did not perform experiments
on a real robot, therefore it cannot be said with certainty that it is actually robust.

3.2. A Novel Approach for Slip Detection

The idea behind the proposed method is to overcome the aforementioned problems.
We move to the idea of detecting the slippage using feet velocities expressed in B. An ap-
proach based on ẋb

f = [ẋb
fx

ẋb
fy

ẋb
fz
]T ∈ R3 is more robust because it directly depends on

direct sensor measurements (e.g., encoders), avoids drifts that usually happen in getting
the base states in the world frame, or using numerical integration from IMU.

A slipping leg has the foot velocity deviating from the desired one. A measure of the
deviation from the desired velocity can be given by ∆V = ||d ẋb

f − ẋb
f ||, the norm of the

difference between the desired and actual foot velocities in the body frame B.
We can thus detect slippage, when ∆V exceeds a certain limit, e.g., a threshold ε,

during the stance phase. However, calculating the norm is not a reliable tool for detecting
slippage. The difference between the desired and actual velocity increases along the preva-
lent direction of motion because of a greater tracking error. Furthermore, if in general we
want to change the velocity of the robot during its motion, we need to adjust ε accordingly.
So to ensure that the direction and velocity of motion do not affect ∆V, we introduce a
weight to scale each component of the vector d ẋb

f − ẋb
f . The weight is d ẋb

fi
, the desired foot
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velocity in B for each component. In this way we minimize the impact of a possible greater
tracking error in one of the three directions, and we ensure to have a ∆V that remains
similar during the motion, even if we change the desired body velocity. This is evident
in Figure 3: on the top of the figure, it is shown how ∆V changes when the velocity of the
robot is modified, during a trotting task with a variable feed rate (the velocity increases in
the interval [10–20] s, along the x-direction). On the bottom, it is shown that ∆V keeps the
same trend for the duration of the previous task.

For numerical reasons, to ensure that the denominator is always non-zero, we divide
by |d ẋb

fi
| and we add a margin m, whose value is experimentally tuned. When slippage

occurs, the value of ∆V increases. So we impose an upper limit to ∆V, beyond which a
further increase is considered a slippage. In the end, we have:

∆V =

√√√√ ∑
i=x,y,z

(
d ẋb

fi
− ẋb

fi

|d ẋb
fi
|+ m

)2

> εv (4)

where εv is a conditioned threshold because its value depends on the phase of the foot
motion. During the swing phase εv is set to ∞ because a swing-leg cannot slip. During the
stance phase εv has a constant value, for each leg. This value is chosen as the percentile on
∆V. The percentage p is tuned in order to detect the higher peaks of ∆V.

εv =

{
∞ swing phase
percentile(∆V, p) stance phase

(5)

0 5 10 15 20 25 30
0

0.2

0.4

0.2

0.4

0

[a
d

im
]

|

[m
/s

]
Δ

V
Δ

V

Time [s]

Figure 3. ∆V (top) and ∆V (bottom) in a simple trotting task with variable feed rate (no slippage).
The higher peaks in the top-figure correspond to a higher linear velocity along the x-axis.

In case of slippage, another important question is: How far did we slip? A quantitative
measure of the slipping length can be derived from the measurement of the foot position.
Indeed, during slippage, the foot position changes by deviating from the desired one. This
deviation can be quantified by calculating ∆P =

∣∣∣||dxb
fi
|| − ||xb

fi
||
∣∣∣. ∆P is important for

another reason: at the beginning of a foot-ground contact, there is a short time interval
in which the difference between desired and actual foot velocities instantaneously in-
creases (Figure 4). This may be due to multiple causes: (i) an actual, but small and, perhaps,
not important slippage, (ii) delay in control, and (iii) the current implementation of stance
detection (Section 2.3) that leads to a small delay in detecting contact with the ground.
The foot slippage (∼1–2 cm) in this time interval is considered negligible if compared to
the size of the robot, and to make sure it is not detected we add a condition on ∆P:

∆P =
∣∣∣||dxb

fi
|| − ||xb

fi
||
∣∣∣ > εp (6)

If ∆P remains below the threshold εp, the slippage is considered acceptable. εp has a
constant value, tuned experimentally.
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Figure 4. Desired (blue line) and actual (red line) foot velocity in a simulation task of crawling (no
slippage). Velocity v = [vx vy vz] is expressed wrt B. The shaded areas indicate that the foot is
in stance.

Therefore, a slippage is detected when both ∆V and ∆P exceed their respective thresh-
olds. We introduce a flag βi ∈ [0, 1] for each leg i whose value is 1 if there is a slip detection,
0 otherwise. Below the pseudo-code implementation of the proposed Algorithm 1.

Algorithm 1 detectSlippage(ẋb
fi

,d ẋb
fi

,xb
fi

,dxb
fi

)

1: ∆V ← scaled di f f (ẋb
fi

,d ẋb
fi
); . ẋb

fi
and d ẋb

fi
are the actual and desired foot velocity in B

2: ∆P← di f f (xb
fi

,d xb
fi
); . xb

fi
and dxb

fi
are the actual and desired foot position in B

3: for each stance leg i do
4: βi ← (∆V > εv)& (∆P > εp); . εv and εp are the thresholds for ∆V and ∆P

5: end

4. Simulation Results

The robot kinematics and dynamics functions are implemented in C++, as well as
the proposed algorithm. We used the software simulator Gazebo to test and refine our
approach. To integrate the work with the other elements of the robot we built the proper
ROS structure. Then all the data collected from the simulations were analyzed in Matlab in
order to improve the phase of tuning. Simulation (and experimental) results are shown in
the attached video.

We performed several simulations to test the proposed and the baseline approach.
Then we compared the results in order to underline the strengths of our method.

4.1. Crawling onto Patches of Ice

A transition from walking on flat terrain (µ = 0.8) to ice slabs (µ = 0.08) is a good
template to demonstrate the effectiveness of the algorithm. Figure 5 shows the sequence
of a movement: the robot starts walking from non slippery terrain and then moves to
ice-sheets. During the motion, all the legs are slipping. For this simulation test we used the
following parameters: εv = percentile(∆V, 99%), εp = 0.03, m = 0.3.

In Figure 6 the shapes of ∆V and ∆P are shown. The shaded areas represent the
periods when a foot is in contact with the ground. The light red stripes indicate the
slippage. Legs slip in the order LH-RF-LH-RH. The change in velocity of a slipping leg
affects the ∆V shapes of the other legs. This is because the velocities are expressed in B.
When a foot is slipping, the base-position changes for some instants, and then each foot
velocity changes (top figures in each subplot). Adding the further constraint on ∆P (6)
prevents this from affecting the correct detection for the other legs.
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Figure 5. Simulation of the HyQ robot traversing slippery terrain patches with a crawl gait (low
friction patches illustrated in white). The image sequence starts from the top left to right and continues
at the bottom left. The red arrows indicate slipping feet.

ε

ε

Figure 6. Plots of ∆V and ∆P (blue) with respective thresholds (red line) illustrated for the four legs
(LF, RF, LH, RH) during a crawl gait. The gray shaded area shows stance phases and the red shaded
area marks slippage. The little red arrows indicate short slip events.

As it is possible to see in the attached video, in this test the slippage occurs one
leg at a time. So, for the comparison we implemented the baseline strategy described in
Section 3.1 to detect the slippage of one leg. As threshold for the baseline approach we
chose εvBL = 0.04.

Figure 7 shows the flags obtained with the proposed approach (blue lines) and the
baseline (red lines). The shaded red areas indicate when the robot is truly slipping, i.e., the
ground truth. We manually obtained this ground truth from simulation where we observed
the periods when the robot was slipping. From Figure 7 it is clear that our approach is more
reliable in detection: it is faster and the flag remains 1 for the entire duration of the slippage.

Figure 7. Comparison between the flags. The red one is obtained with the baseline approach, the blue
one with the proposed approach. The gray shaded area shows stance phases and the red shaded area
indicates the ground truth.

4.2. Trotting onto Patches of Ice

To demonstrate that the proposed method can be used with different gaits, we tested it in
simulation with the robot trotting on a terrain consisting of four low friction patches (µ = 0.08),
as shown in Figure 8. We used the following parameters: εv = percentile(∆V, 95%),
εp = 0.03, m = 0.3. For the comparison we implemented the baseline strategy described in
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Section 3.1 to detect the slippage of multiple legs slipping at the same time. For the baseline
we set the threshold εvBL = 1.

Figure 8. Simulation of the HyQ robot traversing slippery terrain patches with a trot gait (low friction
patches illustrated in white). The image sequence starts from the top left to right and continues at the
bottom left. The red arrows indicate slipping feet.

Figure 9 shows ∆V and ∆P when the robot trots onto ice slabs. The shaded red areas
indicate the actual slipping. Figure 10 shows the comparison between the flags obtained
using the baseline and the proposed approaches. We see that the slip detection of correctly
identified slipping stance legs does not affect the slip detection of the other stance legs (their
flags continue to be 0 thanks to the fact that ∆P remains below εp). Additionally, in this
simulation, the proposed approach is more efficient in detecting the slippage of each foot
for its entire duration.

ε

ε

Figure 9. Plots of ∆V and ∆P (blue) with respective thresholds (red line) illustrated for the four legs
(LF, RF, LH, RH) during a trot gait. The gray shaded area shows stance phases and the red shaded
area marks slippage.

Figure 10. Comparison between the flags. The red one is obtained with the baseline approach,
the blue one with the proposed approach. The gray shaded area shows stance phases and the red
shaded area indicate the ground truth.
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5. Experimental Results

In this section, we show experimental results on HyQ. A first experiment was done
with the robot walking on non-slippery terrain. A second experiment was performed using
a slippery patch for the robot to walk on. To make the patch slippery, we sprinkled its
surface with soap. For the experiments we used only crawl as gait. We recorded data
from these two experiments and then we used them offline to carry out a proper tuning
procedure of the thresholds. We found the minimum εp and εv that do not detect any
slipping in the first experiment, and 95% of the actual slips in the second one.

After the first experiment we chose the following parameters: εp = 0.04, m = 0.3,
εv = percentile(∆V, 95%). During the test, LH and RF slipped at the same time, so, for the
comparison, we implemented the multiple leg slip detection method of the baseline. We
set εvBL = 1 as threshold for the baseline approach.

Although only the LH and RF legs were placed in slipping conditions, during the
experiment, also for the RH leg a slippage occurred. LH was the only non-slipping leg (the
reader can refer to the attached video). Figure 11 shows ∆V and ∆P for all the four legs
during the slippery terrain experiment shown in Figure 12. Figure 13 shows the comparison
between the flags obtained using the two methods.

As can be seen in Figures 11 and 13, all the detections are correctly performed. Ad-
ditionally, in the experiments, the results obtained with the proposed method are better,
as they detect the actual slipping events, there are no false positives and the flags are also
able to show the duration of the slipping. There are, instead, false positives in the baseline
approach, for which a slippage is detected for LH although it did not actually slip.

ε

ε

Figure 11. Plots of ∆V and ∆P (blue) with respective thresholds (red line) illustrated for the four legs
(LF, RF, LH, RH) during a crawl gait. The gray shaded area shows stance phases and the red shaded
area marks slippage.

Figure 12. Experiment of the HyQ robot traversing slippery terrain patches with a crawl gait (low
friction patches obtained by sprinkling a whiteboard with soap). The image sequence starts from the
top left to right and continues at the bottom left. The red arrows indicate slipping feet.
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Figure 13. Comparison between the flags. The red one is obtained with the baseline approach,
the blue one with the proposed approach. The gray shaded area shows stance phases and the red
shaded area indicate the ground truth.

6. Conclusions and Future Works

In this paper, we presented a novel slip detection approach for legged robots based on
kinematics, which makes use of velocity and position measurements at the ground contacts.
In the field of legged robots, a kinematic-based approach is more suitable than a force-based
approach, which involves the use of 6-axis force/torque sensors at the feet. The provided
method shows that it is possible to detect a slippage quickly and effectively relying on the
foot positions and velocities expressed in the base frame. This allows avoiding problems
related to drift, which usually happen when using the world frame. We proposed a method
suitable for different types of locomotion and which is applicable to situations where the
robot is required to change its velocity. Then we proved the effectiveness of the algorithm
through the results obtained in simulation tests and in experiments. We also compared
these results with those obtained using an already existing algorithm, showing that our
implementation is more robust.

Future work includes the analysis of the maximum amount of slippage tolerable in the
context of locomotion, that can preserve stability. Furthermore, we plan to implement an
estimation of the friction properties of the terrain during the locomotion. This can be useful
to set different levels of “cautiousness ”, selecting more or less conservative gaits according
to the situation. In the future we can fuse the proposed approach with information coming
from vision, that could provide a default value for the friction coefficient together with
an estimate of its roughness. Then we can move on to the implementation of a recovery
strategy, that is essential for locomotion on very slippery terrain such as ice and in situations
where the inclination of the terrain is wrongly estimated.
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Abbreviations
The following abbreviations are used in this manuscript:

DLS Dynamic Legged Systems
IIT Istituto Italiano di Tecnologia
ROS Robot Operating System
HyQ Hydraulically actuated Quadruped
PTAL Proprioceptive Terrain-Aware Locomotion
GRF Ground Reaction Force
IMU Inertial Measurement Unit
UKF Unscented Kalman Filter
DoF Degree of Freedom
HAA Hip Adduction-Abduction
HFE Hip Flexion-Extension
KFE Knee Flexion-Extension
RCF Reactive Controller Framework
LF Left-Front
RF Rigth-Front
LH Left-Hind
RH Right-Hind
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