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Multi-Sensor Fusion for Quadruped Robot State
Estimation using Invariant Filtering and Smoothing

Ylenia Nisticò1,∗, Hajun Kim2,∗, João Carlos Virgolino Soares1, Geoff Fink1,3, Hae-Won Park2, Claudio Semini1

Abstract—This letter introduces two multi-sensor state estima-
tion frameworks for quadruped robots, built on the Invariant
Extended Kalman Filter (InEKF) and Invariant Smoother (IS).
The proposed methods, named E-InEKF and E-IS, fuse kinematics,
IMU, LiDAR, and GPS data to mitigate position drift, particu-
larly along the z-axis, a common issue in proprioceptive-based
approaches. We derived observation models that satisfy group-
affine properties to integrate LiDAR odometry and GPS into
InEKF and IS. LiDAR odometry is incorporated using Iterative
Closest Point (ICP) registration on a parallel thread, preserving the
computational efficiency of proprioceptive-based state estimation.
We evaluate E-InEKF and E-IS with and without exteroceptive sen-
sors, benchmarking them against LiDAR-based odometry methods
in indoor and outdoor experiments using the KAIST HOUND2
robot. Our methods achieve lower Relative Position Errors (RPE)
and significantly reduce Absolute Trajectory Error (ATE), with
improvements of up to 28% indoors and 40% outdoors compared
to LIO-SAM and FAST-LIO2. Additionally, we compare E-InEKF
and E-IS in terms of computational efficiency and accuracy.

Index Terms—sensor fusion, localization, legged robots.

I. INTRODUCTION

STATE ESTIMATION is crucial for quadruped robots
navigating complex environments, as it determines pose,

velocity, and key parameters from sensor inputs. Accurate
estimation fuses high-frequency proprioceptive inputs (e.g.,
IMUs, encoders), which suffer from drift, with lower-frequency
exteroceptive inputs (e.g., cameras, LiDARs), which may strug-
gle in challenging conditions (e.g., foggy areas, long corridors,
etc.). Sensor fusion techniques address these limitations by com-
bining both sensor types. For instance, LIO-SAM [1] employs
a factor graph for LiDAR-inertial odometry (LIO), while FAST-
LIO [2] uses an iterated Extended Kalman Filter (EKF) to fuse
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LiDAR and IMU data, with FAST-LIO2 [3] further improving
accuracy by eliminating the need for feature extraction.

Although effective, these methods do not explicitly consider
contact interactions, which can play a significant role in
legged robot locomotion. Specifically for legged robots, state
estimation incorporating leg kinematics has been studied in
previous works, such as [4], [5], which introduced EKF-based
frameworks combining IMU and kinematic measurements
under the stable contact assumption. To handle violations of
this assumption, a slip rejection method that adjusts covariances
during slipping was proposed in [6].

Among more recent research works, Barrau and Bonnabel
proposed in [7] the use of the group-affine property for
state estimation, which enables a system to be formulated
as a linear system by using the Lie algebra error of the
state variables defined in a Lie group. They also introduced
the invariant EKF (InEKF), which leverages group-affine
properties and shows better convergence than the standard EKF
when initial errors are present. Hartley et al. [8] introduced
a Proprioceptive-only InEKF (P-InEKF) for legged robots,
demonstrating that fusing IMU data with the robot’s kinematics
results in a state estimation process that is approximately
group-affine. Further studies in P-InEKF have explored the
incorporation of a learning-based contact estimator [9] or the
use of robust scale-variant cost functions to handle challenging
terrains [10]. Moreover, while the P-InEKF processes only the
two most recent states, the study in [11] introduced the Invariant
Smoother (IS), which leverages the group-affine property within
a smoothing framework that preserves the state history. Yoon
et al. [12] introduced a Proprioceptive-only Invariant Smoother
(P-IS) for legged robots, demonstrating robust performance
during dynamic contact events while accounting for contact
loop costs.

Despite these advancements, proprioceptive-only methods
remain prone to drift over time due to an unobservable
absolute position and yaw angle [4]. Several state estimation
frameworks for legged robots integrate proprioceptive and
exteroceptive sensors to address this issue. For instance,
Pronto [13] uses an EKF to fuse IMU, kinematics, stereo
vision, and LiDAR for pose corrections. MUSE [14] fuses
a nonlinear attitude observer with a Kalman filter for precise
state estimation, while STEP [15] integrates pre-computed
foot velocities and stereo camera data, removing the need for
contact detection and stable contact assumptions. VILENS [16]
and Cerberus [17] leverage factor graphs to robustly fuse
multiple sensors, with Cerberus also using visual data for
kinematic parameter estimation. Leg-KILO [18] tightly
integrates IMU, kinematics, LiDAR odometry, and loop
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closure via graph optimization for enhanced accuracy.
However, the studies in [13]–[18] do not consider state

estimation with the group-affine property, despite its advantages
in improving estimation accuracy and convergence stability [7],
[11]. Achieving these benefits requires that both the propagation
and observation models for sensor measurements are formulated
to satisfy the group-affine conditions [7], [11].

Meanwhile, some studies have explored learning-based meth-
ods for state estimation [19], [20]. For legged robots, [21] uses
a neural measurement model with proprioception, while other
works use transformers for the estimation [22], [23]. However,
these techniques require large datasets [24], have high compu-
tational costs, and may struggle with real-time performance.

Some studies have incorporated exteroceptive sensors into
state estimation using the group-affine property. The study
in [25] fuses inertial, kinematics, and linear velocity measure-
ments from a tracking camera, capitalizing on the underlying
group-affine structure. Similarly, Gao et al. [26] presented an
InEKF for dynamic rigid surfaces, combining RGB-D cameras
and contact orientation measurements using ArUco markers.

To the best of our knowledge, neither the InEKF nor the
IS frameworks for legged robots have integrated LiDAR or
GPS. In this work, we aim to design an observation model for
these frameworks that integrates LiDAR and GPS, in addition
to leg kinematics, while preserving the group-affine structure.
The main contributions are as follows:

• We extended InEKF [8] and IS [12] by fusing kinematics
and IMU, with LiDAR odometry and GPS measurements
to mitigate the position drift inherent in proprioceptive-
only methods, naming our approaches as E-InEKF and
E-IS. To the best of our knowledge, this is the first work
to incorporate LiDAR odometry and GPS into InEKF and
IS for quadruped robots.

• To integrate LiDAR odometry and GPS into the InEKF and
the IS, we derive an observation model that satisfies group-
affine properties for both sensor types. Additionally, to
manage LiDAR’s low frequency of approximately 10 Hz,
we calculate LiDAR odometry in a parallel thread using
the ICP registration of [27], allowing the estimator thread
to maintain a fast computation time.

• Our algorithms were verified on the KAIST Hound2
quadruped robot [28] in indoor and outdoor environments,
benchmarking the results against LIO-SAM [1] and
FAST-LIO2 [3], two LIO systems. Additionally, ablation
studies were conducted to evaluate the performance
without LiDAR or GPS, and to compare the accuracy
and computation trade-offs between E-IS and E-InEKF.

The paper is organized as follows: Sec. II outlines the
preliminaries for group affine property, P-InEKF, and P-IS.
Sec. III details the implementation of the observation models
in E-InEKF and E-IS. Sec. IV describes the experiments, while
Sec. V discusses the results. Sec. VI concludes the paper.

II. PRELIMINARIES

This section provides the theoretical background based on [7],
[11], [29], and an overview of the P-InEKF [8] and P-IS [12].

A. Matrix Lie Groups and group-affine property

In robots’ state estimation, the state can be represented
on a manifold rather than a vector space. For instance, the
orientation is represented by the special orthogonal group
SO(3) = {R ∈ R3×3 | det(R) = 1,R⊤R = I3}, where
Ind ∈ Rnd×nd is the identity matrix. When the state includes
additional vector components, such as the position or velocity,
the elements of SEk(3) can be adopted, which is represented
by the (3 + k)× (3 + k) matrix and defined as follows [8]:

X ≜

[
R 1p ... kp
0k,3 Ik

]
∈ SEk(3), (1)

where R ∈ SO(3) is the rotation matrix, and ip ∈ R3, for
i = 1, 2, . . . , k, is a vector. The element X ∈ SEk(3) can be
mapped to ξ ≜ [ϕ⊤, 1ξ⊤, · · · , kξ⊤]⊤ ∈ R3+3k, which lies in
an Euclidean vector space, via the logarithmic map represented
by X ∈ SEk(3)→ Log(X) ∈ R3+3k and back via the expo-
nential map described by ξ ∈ R3+3k → Exp(ξ) ∈ SEk(3).
The exponential map in SEk(3) is defined as follows:

Exp(ξ) = exp(ξ∧) =

[
exp(ϕ∧) Jl(ϕ)

1ξ · · · Jl(ϕ)
kξ

0k,3 Ik

]
,

(2)
where Jl(·) is the left Jacobian of the SO(3) manifold, and the
hat operation (·)∧ on ϕ and ξ , which is the inverse mapping
of the vee operation (·)∨, is respectively defined as

ϕ∧ =

 0 −ϕz ϕy

ϕz 0 −ϕx

−ϕy ϕx 0

 , ξ∧ =

[
ϕ∧ 1ξ · · · kξ
0k,3 0k,k

]
(3)

The adjoint matrix, which plays a key role in transforming
perturbations in the tangent space, is defined as:

AdX =


R 03×3 · · · 03×3

1p∧R R · · · 03×3

...
...

. . .
...

kp∧R 03×3 · · · R

 . (4)

Also, we define the ⊙ operation, introduced in [12], as follows:

ξ⊙ ≜

[
−ϕ∧ 1ξ · I3 · · · kξ · I3
0k,3 0k,3 · · · 0k,3

]
∈ R(3+k)×(3+3k). (5)

The group-affine property provides a significant advantage
by ensuring that the observer’s error dynamics do not depend
on the current state when the propagation and observation
models, defined on the Lie Group, are group-affine [7].

For an arbitrary state Xt at time t and its corresponding
estimate X̄t in the Lie Group G, the right-invariant error
is defined as ηrt ≜ X̄−1

t Xt, and the corresponding right
log-invariant error is ξrt ≜ Log(ηrt ). A system is group-
affine if its propagation model f(·) satisfies the following
conditions: d

dtXt = f(Xt) and f(XY) = Xf(Y)+f(X)Y−
Xf(Idim(Y))Y for ∀t ≥ 0 and ∀X,Y ∈ G.

When the trajectories X0:t and X̄0:t are governed by the
same group-affine propagation, the right invariant error’s
propagation dynamics is d

dtη
r
t = g(ηrt ), where a function g(·)

is represented by g(ηrt ) = f(ηrt ) − ηrt f(Idim(Y)), as shown
in [7]. For small errors, it is also proven in [7] that the
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propagation of the log-invariant error ξrt is a linear differential
equation, with a constant matrix G:

g(ηrt) = (Gξrt)
∧ +O(∥ξrt∥2),

d

dt
ξrt = Gξrt , (6)

where O(·) indicates higher order terms that are negligible.
Due to the constant matrix G, the evolution of the error ξrt
is autonomous and independent of the two trajectories X0:t

and X̄0:t, which is referred to as the log-linear property of
the error [7].

Meanwhile, the group-affine property for the observation
model is satisfied under the condition:

yt = X−1
t s+wobs

t , (7)

where yt is the observation at time t, s is a constant vector,
and wobs

t is Gaussian noise vector of the observation.

B. State Definition

Inspired by [8], [12], we define the state Xt ∈ SEN+2(3)
for N contact points, while the IMU bias vector xt ∈ R6 is
defined in the vector space as follows:

Xt ≜

[
Rt vt pt d1,t · · · dN,t

0N+2,3 I(N+2)

]
and xt ≜

[
bω
t

ba
t

]
,

(8)
where Rt is the base orientation, vt is the linear velocity, pt is
the robot position, and di,t is i-th contact position, while bω

t ,
and ba

t are the IMU biases for gyroscope and accelerometer.
For the sake of readability, since the measurement models

for each contact point di,t are identical, we will derive all
further equations assuming only a single contact point dt.

We also consider the measurements as Zt ≜[
ω̃⊤

t , ã
⊤
t , q̃

⊤
t , ˙̃q

⊤
t ,p

⊤
cl,t,p

⊤
gps,t

]
, where ω̃t ∈ R3, ãt ∈ R3,

q̃t ∈ R3M , ˙̃qt ∈ R3M , pcl,t, and pgps,t are the angular
velocity, the linear acceleration, joint positions, joint velocities
for the M -legged robot, where M is the number of legs,
LiDAR point clouds, and position data from GPS, respectively.

C. Invariant Extended Kalman Filter For Legged Robots

In the InEKF [8], both the propagation and observation
models are formulated under the group-affine property [8] to
ensure that the right-invariant error is independent of the current
state. The propagation model integrates IMU measurements
to predict the state, whereas the observation model refines the
estimates under the stable contact assumption, which implies
zero foot velocity during ground contact.

The system dynamics for the propagation that includes the
corruption from noise and bias can be described as follows [8]:

d

dt
Rt = Rt(ω̃t − bω

t −wω
t )

∧,
d

dt
pt = vt (9)

d

dt
vt = Rt(ãt − ba

t −wa
t ) + g,

d

dt
dt = Rtw

d
t (10)

d

dt
bω
t = wbω

t ,
d

dt
ba
t = wba

t (11)

where g is the gravity vector, wω
t , wa

t , wd
t , wbω

t , and wba

t

are the zero-mean Gaussian noise terms of each process. The

propagation model can be described as the noise-corrupted
version in the discrete domain [8] of the log-linear property (6):[
ξrt+1

ζrt+1

]
= (I18+At∆t)

[
ξrt
ζrt

]
+Btw̄t,Bt = ∆t

[
AdX̄t

012,6

06,12 I6

]
(12)

At =


0 03,3 03,3 03,3 −Rt 03,3

(g)∧ 03,3 03,3 03,3 − (vt)
∧
Rt −Rt

03,3 I3 03,3 03,3 − (pt)
∧
Rt 03,3

03,3 03,3 03,3 03,3 −
(
dt

)∧
Rt 03,3

06,3 06,3 06,3 06,3 06,3 06,3

 ,

(13)
where ∆t is the time step of the state estimation,
w̄t = [(wω

t )
⊤,(wa

t )
⊤,(wa

t∆t)⊤,(wd
t )

⊤,(wbω

t )⊤,(wba

t )⊤]⊤ is
the noise vector, et ≜

[
(ξrt )

⊤, (ζrt )
⊤]⊤, and the bias error

can be defined as ζrt = xt − x̄t.
For the observation model, the forward kinematic measure-

ment, which captures the relative position of the contact point
with respect to the body, is formulated to satisfy the group-
affine property of (7). The forward kinematics fk(q̃t) can be
expressed as: fk(q̃t) = R⊤

t (dt − pt) + Jp(q̃t)w
q
t , where Jp

denotes the analytical Jacobian of the forward kinematics, and
wq

t is the observation noise in forward kinematics. As in (7),
the right-invariant form of this measurement can be described
as follows, allowing the innovation to remain only dependent
on the invariant error [8]:

Ykin
t = X−1

t bkin
t +Vkin

t , (14)

where Ykin
t = [fk(q̃t) 0 1 − 1]⊤ is the vector of kinematic

observation, X−1
t is the inverse of the state matrix Xt,

bkin
t = [03,1 0 1 − 1]⊤ is a constant vector, while Vkin

t =
[Jp(q̃t)w

q
t 0 0 0]⊤ is the Gaussian noise vector of the

observation model.
Given the observation model of (7), which satisfies the

group-affine property, the state and covariance updates of the
observation model can be expressed as follows [8]: X̄+

t =
Exp(KtΠX̄−

t Yt)X̄
−
t , P+

t = (I −KtHt)Pt(I −KtHt)
⊤ +

KtN̄tK
⊤
t , where X̄−

t is the estimated state from system dy-
namics, Pt is the system covariance matrix, and Π ≜

[
I 03,3

]
is the auxiliary selection matrix. The Kalman gain matrix Kt

is computed as Kt = PtH
⊤
t (HtPtH

⊤
t +N̄t)

−1. The matrices
Ht and N̄t are given by Ht =

[
03,3 03,3 − I I

]
and

N̄t = R−
t Jp(q̃t)Cov(wq

t )Jp
⊤(q̃t)(R

−
t )

⊤.

D. Invariant Smoother For Legged Robots

Unlike the filtering method of [8], which handles the last
two states of the system, the smoothing method aims to recover
the estimates using Maximum A Posteriori (MAP) estimation,
by incorporating the states X0:n and measurements Z0:n

within the specific time window n. As derived in [12], MAP
can be formulated as a nonlinear least-squares optimization
problem as follows:

e*
0:n

= argmin
e0:n

(∥rpri − Jprie0:n∥2Σpri

+

n−1∑
t=0

∥rtpro − Jt
proe0:n∥2Σpro

+

n∑
t=0

∥rto − Jt
oe0:n∥2Σo

),
(15)
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where n is the window size (WS) , rpri, rpro and ro are residuals,
Σpri, Σpro and Σo are covariance matrices, and Jpri, Jpro and
Jo are the Jacobians at the operating points X̄t and x̄t for the
distribution of prior, propagation, and observation, respectively.

The prior cost gives an initialization to state estimation,
employing marginalization to keep the fixed size of the time
window. The detailed derivation is explained in [12] and not
repeated here. The propagation cost can be derived from the
log-linear property, as shown in [12], and expressed as follows:

rtpro =

[
Log(fd

M (X̄t)X̄
−1
t+1)

fd
v (x̄t)− x̄t+1

]
,Σpro = BtCov(w̄t)B

⊤
t , (16)

Jt+1
pro = I18 +At∆t, Jt

pro = I18, (17)

fd
M (Xt) =

[
Rd

t vd
t pd

t dd
t

03,3 I3

]
, fd

v (xt) =

[
bω
t

ba
t

]
, (18)

where fd
M is the discretized dynamics of (9)

and (10), fd
v is the discretized dynamics of (11),

Rd
t = RtExp((ω̄t−bω

t )∆t), vd
t = vt+Rt(āt−ba

t )∆t+g∆t,
and pd

t = pt + vt∆t+ 1
2Rt(āt − ba

t )(∆t)2 + 1
2g(∆t)2.

For the observation cost, the right-invariant kinematics
observation of (14) can be employed as in [12]: rto = XtY

kin
t −

bkin
t ,Jo

t = [(bkin
t )⊙ 06,6],Σ

t
o = X̄tΣkin(w

q)tX̄
⊤
t , where

the ⊙ operator is defined in (5).
When the MAP of (15) is solved, the optimized variables

updates the operating states, X̄i and x̄i, at each iteration as:
X∗

t ← Exp(ξr∗t )X̄t,x
∗
t ← x̄i + ζr∗i .

III. PROPOSED OBSERVATION MODEL

The main contribution of this paper is a measurement model
that integrates kinematic measurements with exteroceptive
sensor data, specifically LiDAR and GPS, while satisfying the
group-affine property of (7), thereby enabling the incorporation
of sensor measurements into InEKF or IS.

A. LiDAR Odometry Factor

For LiDAR odometry, we adopt KISS-ICP [27], an efficient
algorithm that estimates the pose by sequentially aligning
LiDAR point clouds using a point-to-point ICP method. KISS-
ICP applies a constant-velocity motion model to deskew scans,
uses voxel-based downsampling to reduce computational load,
adapts thresholds for data association based on motion, and
refines pose estimates through robust optimization handling
point-to-point ICP. By solving the ICP problem, we obtain the
position of the LiDAR odometry, plid, in the world frame.

Unlike many other odometry techniques, KISS-ICP operates
independently of additional sensors such as IMUs or leg
odometry, enhancing adaptability. Furthermore, we employed
a loosely coupled approach, running the LiDAR odometry on
a separate thread to preserve the efficiency of proprioceptive
state estimation. This loosely coupled setup allows KISS-ICP to
deliver reliable LiDAR-based position updates, which integrate
seamlessly into our system.

LiDAR

GPS

IMU

Joint Encoders

E-InEKF

Point Cloud

Position

Angular rate
Acceleration

Joint Position
Joint Velocity

Propagation

Group 
affine

property

Observation

Marginalization

LiDAR thread

E-IS
Prior 

Contact
Estimator

Slip 
Rejection

Legged Robot Specific Method

Scan Deskewing
Point Cloud Subsampling

ICP Registration

Fig. 1: The structure of the two proposed frameworks. The E-
InEKF and E-IS have the propagation and observation modules,
but the E-IS also includes the prior and marginalization
modules.

B. Observation Model for LIDAR and GPS

1) LiDAR measurement model: by computing the LiDAR
position estimate plid from the point-to-point ICP problem [27],
we express the LiDAR position estimate plid with respect to
the state Xt in the right-invariant form as given in (7):

Ylid = X−1
t blid +Vlid (19)

where blid = [plid 0 1 0]⊤ is the LiDAR observation vector,
Ylid = [03,1 0 1 0]⊤ is a constant vector, while Vlid =
[Jplid

wlid
t 0 0 0]⊤ is the Gaussian noise vector associated

with the observation model. This formulation aligns LiDAR
measurements with the group-affine property, facilitating con-
sistent integration within the invariant estimation frameworks.

2) GPS measurement model: to incorporate GPS position
estimates pgps into the invariant state estimation framework,
we express the GPS position pgps with respect to the state Xt

as a right-invariant observation model:

Ygps = X−1
t bgps +Vgps (20)

where bgps = [pgps 0 1 0]⊤ represents the GPS observation
vector, Ygps = [03, 1 0 1 0]⊤ is a constant vector, while
Vgps = [Jpgpsw

gps
t 0 0 0]⊤ is the Gaussian noise vector

associated with the observation model.
Based on the measurement model corrupted by zero-mean

Gaussian noise, we derived the observation models for LiDAR
and GPS measurements. The introduced observation models
for LiDAR and GPS of Equations (19) and (20) fulfill the
group-affine property required for the invariant state estimation,
because our measurement models follow the right-invariant
observation form [7], given in Equation (7). Thus, our approach
preserves the invariant structure, ensuring that the error
dynamics of the estimator remain autonomous and independent
of the robot’s trajectory.

C. E-InEKF: LiDAR-GPS fused Invariant EKF

Building upon the contact-aided InEKF in [8], we ex-
tend the measurement model to include LiDAR-odometry
and GPS observations. Starting from (14), (19), and (20),
we define an aggregated observation vector Y =
[Y⊤

kin, Y⊤
lid, Y⊤

gps]
⊤, and a corresponding constant vector
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b = [b⊤
kin, b⊤

lid, b⊤
gps]

⊤. Rewritten in matrix form, the
right-invariant observation model becomes:Ykin

Ylid

Ygps


︸ ︷︷ ︸

Y

=

X−1 0 0
0 X−1 0
0 0 X−1


︸ ︷︷ ︸

Xaug
−1

bkin

blid

bgps


︸ ︷︷ ︸

b

+

Vkin

Vlid

Vgps


︸ ︷︷ ︸

V

(21)

Here Xaug is the augmented state matrix, with the state X
appearing on the diagonal.

The linear update equations follow as described in Sec. II-C,
with the Jacobians defined as H = [H⊤

kin H⊤
lid H⊤

gps]
⊤,

and the noise covariance given by the block-diagonal
(blkdiag) matrix N = blkdiag(Nkin,Nlid,Ngps), where
the individual Jacobians are Hkin = [03,3,03,3,−I3, I3], and
Hlid = Hgps = [03,3,03,3,−I3,03,3], and the individual
covariances are Nkin = RtJp(q̃t)Σ(w

q
t )J

⊤
p (q̃)tR

⊤
t ,

Nlid = RtJlidΣ(w
lid
t )J⊤

lidR
⊤
t , and Ngps =

RtJgpsΣ(w
gps
t )J⊤

gpsR
⊤
t . In these expressions, Σ(wq

t ),
Σ(wlid

t ), and Σ(wgps
t ) are the covariance matrices of the joint

position, LiDAR position, and GPS position noise, respectively.

D. E-IS: LiDAR-GPS fused Invariant Smoother
The E-IS is formulated such that the observation term

in the cost function (15) incorporates global position data
plid,t and pgps,t from LiDAR and GPS, respectively. These
global measurements correct the state by comparing the robot’s
estimated position with observed reference points.

From (15), we continue with the LiDAR observation cost,
by expressing the equation for the LiDAR measurement model
in a right-invariant form, similar to (19), utilizing plid, which
represents the LiDAR position in the robot’s body frame.
Based on this formulation, we compute the LiDAR residual
function, which is subsequently used to update the global robot
position. Specifically, the residual rlid, the Jacobian Jlid, and
the covariance matrix Σlid are defined as: rlid = XYlid−blid,
Jlid = [blid

⊙ 06,6], and Σlid = XΣlid(w
lid
t )X⊤ where

the definition of Ylid and blid is the same as in Equation (19).
Similarly, the residual for GPS is obtained from (20), using

the same approach as for the kinematic and LiDAR observa-
tions. The GPS residual rgps, its Jacobian Jgps, and the cor-
responding covariance Σgps are defined as rgps = XYgps −
bgps, Jgps = [bgps

⊙ 06,6], and Σgps = XΣgps(w
gps
t )X⊤

where Ygps and bgps are defined in Equation (20).
Fig. 1 provides a schematic overview of the two frameworks,

illustrating their shared components and emphasizing the
primary differences between them. The diagram highlights
the common underlying structure while delineating where the
two approaches are different. Fig. 1 also shows the legged
robot-specific methods from [6], [12] that we incorporated to
enhance the E-InEKF and E-IS. Specifically, a contact estimator
based on the momentum observer of [30] determines the contact
states αi for the i-th contact, while to handle dynamic events
such as slipping, we adopt a slip rejection method that adjusts
the covariance of contact-related observations [6].

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the E-
InEKF and E-IS algorithms, using the quadruped robot KAIST

Fig. 2: The indoor experiment involved large impacts and
significant changes in the robot’s height, as illustrated in the
figures.

Hound2. These experiments were conducted in two distinct
scenarios: indoor and outdoor environments, as shown in Fig. 2
and Fig. 4. All results were obtained from offline processing
and analysis of the collected sensor data. Also, we underline
that our state estimators are odometry systems, with no loop
closures applied to reduce drift in the trajectory estimation.

For the indoor experiment, the ground truth pose was
provided by a Vicon motion capture system. For the outdoor
experiment, ground truth was obtained from a Holybro Real-
Time Kinematic (RTK) GPS with a helical antenna.

As baselines, we adopted the proprioceptive-only invariant
state estimation methods P-InEKF [8] and P-IS [12], as well as
the state-of-the-art LiDAR-based methods LIO-SAM [1] and
FAST-LIO2 [3]. The performance of the proposed algorithms
was quantified using two widely recognized metrics: the mean
Absolute Trajectory Error (ATE), which assesses global pose
estimation accuracy, and the mean Relative Position Error
(RPE), which evaluates local consistency in pose estimation.

A. Indoor Experiments
In the indoor experiment, the robot equipped with a Velodyne

VLP16 LiDAR sensor performed walking tests in a controlled
environment. Since the GPS is not informative in indoor
settings, we evaluated the performance of E-IS and E-InEKF,
which employ kinematics, IMU, and LiDAR data without GPS
data. We refer to E-IS and E-InEKF as E-IS (w/o GPS) and E-
InEKF (w/o GPS), respectively, to indicate that they exclude
the use of GPS in the indoor setting.

The indoor environment simulates real-world challenging
terrain, as shown in Fig. 2. The testing area consists of wooden
blocks, steps terrains, and slippery surfaces coated with boric
acid on acrylic plates. While traversing these terrains, the robot
experiences varying heights and high impacts during contact,
which affects positional drift [18].

The estimation results of the indoor experiments, as
shown in Fig. 3, clearly demonstrate the effectiveness of
integrating LiDAR odometry into the invariant estimator
through the proposed LiDAR observation model. This
integration substantially reduced drift in the z-position, a
critical improvement validated by the mean errors summarized
in Table I. In contrast, the proprioceptive-only methods exhibit
a higher susceptibility to positional drift. These findings
underscore that, while the proprioceptive-only approaches
reveal certain limitations, incorporating LiDAR data into the
estimator significantly mitigates these issues, resulting in more
robust and accurate state estimation in indoor environments.

Furthermore, both E-IS (w/o GPS) and E-InEKF (w/o
GPS) recorded lower ATE and RPE than the LiDAR-based
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Fig. 3: The results for the indoor experiment, where the robot is prone to experience high contact impacts, show that the
proposed frameworks, E-IS and E-InEKF, mitigate the position drift, especially in the z-axis, compared to the proprioceptive-only
methods, P-IS and P-InEKF. In the purple dotted box, the position in the z-axis of P-IS and P-InEKF is indicated by the green
and yellow arrows. Vicon is used as ground truth. In the right plot, the E-IS and E-InEKF trajectories use a color gradient: the
lighter sections indicate the start of the estimates, while the darker sections indicate the end.

baselines. Since these methods fuse IMU and LiDAR data,
without taking into account leg kinematics, their accuracy
might be compromised by high-impact contacts. High-impact
or unexpected motions, such as the slippage, caused larger
errors in LIO-SAM and FAST-LIO2, and these errors would
likely increase further under even more severe impacts. In
contrast, our proposed method maintained consistently robust
performance by leveraging the incorporation of leg kinematics
as an additional measurement.

The variations in terrain heights and high-impact contacts
were critical features of this experiment, emphasizing the
importance of incorporating exteroceptive sensors, such as
LiDAR, to address positional drift along the z-axis. Positional
drift along this axis is inherently unobservable when relying
solely on proprioceptive measurements, as previously analyzed
in [4]. Our proposed frameworks successfully integrate LiDAR
into IS and InEKF, demonstrating how external sensors mitigate
drift in invariant estimators [8], [12] and improve pose
estimation in challenging conditions.

B. Outdoor Experiments
To assess the frameworks’ ability to reduce long-term drift

and maintain robustness in outdoor environments, the robot
traversed a long-distance path of approximately 300 m, as
shown in Fig. 4. The experiment was designed as a closed route,
with the robot returning to its starting point. For the outdoor ex-
periments, we used the KAIST HOUND2 robot equipped with
a Velodyne VLP16 LiDAR sensor and a Holybro RTK GPS.

As shown in Fig. 5, both E-IS and E-InEKF achieved lower
drift compared to P-InEKF and P-IS, especially in the z-axis,
thanks to the incorporation of the exteroceptive measurements.

TABLE I: ATE and RPE statistics over 1 m

Indoor E-InEKF E-IS LIO-SAM FAST-LIO2 P-InEKF P-IS
(w/o GPS) (w/o GPS)

ATE [m] 0.24 0.23 0.32 0.30 0.90 0.85
RPE [m] 0.09 0.08 0.15 0.16 0.21 0.20

D

A B

C

Fig. 4: The illustration of the outdoor experiment: Google Earth
view with screenshots of the robot walking along the outdoor
path, on the top right corner.

In Table II, we compared the ATE and RPE of our
frameworks with those of the baselines (LIO-SAM and
FAST-LIO2). We observed that the proposed frameworks,
E-IS and E-InEKF, showed lower ATE and RPE compared
to the baseline approaches.

Notably, E-InEKF (w/o GPS) and E-IS (w/o GPS) yielded
lower RPE than FAST-LIO2 and LIO-SAM, while FAST-
LIO2’s ATE was only 2 cm lower than that of our proposed
frameworks. Although incorporating leg kinematics can in-
troduce potential noise that may slightly increase the drift
over long trajectories, it enhances robustness, especially when
LiDAR alone may be unreliable (e.g., environments with dense
vegetation or high-impact scenarios), and it is still advantageous
to include these measurements whenever possible.

Moreover, our group-affine observation model effectively
integrates LiDAR and GPS into the invariant filter and smoother,
ensuring robust long-term performance.

V. DISCUSSION

In this section, we analyze the results presented in Sec. IV,
including an ablation study and a discussion on the trade-off
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Fig. 5: The results for the outdoor experiment clearly show the improvement in the z-axis drift when using LiDAR and GPS,
even in long-distance operations. The drift is indicated by the green and yellow arrows, for the P-InEKF and P-IS, respectively.

between E-IS and E-InEKF. The ablation study in Sec. V-A
evaluates the contribution of each module in our approach,
while the analysis in Sec. V-B provides valuable insights into
the strengths and limitations of both methods.

A. Ablation Study

To discuss the effect of exteroceptive sensors, we compare
three cases within our frameworks by selectively excluding
exteroceptive sensors. Specifically, we discuss E-IS, E-IS (w/o
GPS), and P-IS for invariant smoothing and E-InEKF, E-InEKF
(w/o GPS), and P-InEKF for invariant filtering.

As shown in Table I and Table II, the experimental results
demonstrated that the proposed methods, E-IS and E-InEKF,
consistently outperformed LiDAR-based odometry. Both E-
IS and E-InEKF effectively corrected positional drift along
the z-axis in indoor and outdoor settings, highlighting their
robustness in managing vertical displacement errors.

In the outdoor experiments, the reduced accuracy of the E-IS
(w/o GPS) and E-InEKF (w/o GPS), compared to E-IS and
E-InEKF, is primarily due to the use of GPS as ground truth
for evaluation. However, even without GPS, E-IS (w/o GPS)
and E-InEKF (w/o GPS) demonstrated better performance than
LiDAR-based odometry in the indoor environment, where the
robot could experience high-impact contacts, while they showed
comparable performance to the baseline, achieving lower RPE
in the outdoor experiment. These results highlight the robust-
ness of the proposed frameworks, even in the absence of GPS
data, and underscore their ability to outperform state-of-the-art
LiDAR-based odometry methods under challenging conditions.

Also, with the exteroceptive sensors of LiDAR or GPS, the
positional drift of P-IS and P-InEKF is significantly reduced.
Additionally, as shown in Fig. 6, even if we incorporate the
exteroceptive sensors, the computation time is not affected by

TABLE II: ATE and RPE statistics over 1 m

Outdoor E-InEKF E-IS LIO-SAM FAST-LIO2 E-InEKF E-IS P-InEKF P-IS
(w/o GPS) (w/o GPS)

ATE [m] 0.17 0.15 2.28 1.35 1.68 1.37 6.57 6.32
RPE [m] 0.07 0.06 0.20 0.10 0.09 0.08 0.10 0.09

the low operation rates of LiDAR or GPS, which is attributed to
the loosely-coupled manner this work adopted. Notably, since
the LiDAR odometry is calculated on a separate thread, we then
apply the proposed observation model for LiDAR odometry into
E-IS and E-InEKF, while satisfying the group-affine property.

B. Comparison between filtering and smoothing

In all tests, the E-IS algorithm achieved better positional
accuracy than E-InEKF by incorporating a smoothing window
that exploits past states. However, E-InEKF’s reduced
computational cost makes it better suited for real-time
applications. As shown in Table III and Fig. 6, we evaluated
both algorithms under different window sizes (WS = 1, 5, 10,
and 15) to assess the impact of the window length on accuracy
and execution time. Table III shows how the ATE decreases with
larger window sizes, while Fig. 6 illustrates the corresponding
increase in computation time. In all experiments, E-IS achieved
higher positional accuracy than E-InEKF by incorporating
state history through smoothing, while E-InEKF showed
instead to be more efficient in terms of computation time.

Increasing the window size of E-IS improves accuracy but
also increases the computation time. For instance, with WS
= 15, E-IS achieves the lowest ATE, but has an average
computation time of 4.5 ms per iteration, whereas E-InEKF
requires 0.06 ms per iteration. Reducing E-IS’s window to WS
= 1 lowers the execution time to 0.18 ms, with a marginal
decrease in accuracy compared to E-InEKF.

Hence, the choice between the E-IS and E-InEKF depends
on the application’s requirements. If real-time performance is
critical, E-InEKF is preferred. Conversely, tasks demanding
higher pose accuracy, such as detailed mapping or high-fidelity
localization, benefit from a larger smoothing window in E-IS
despite its higher computational cost.

VI. CONCLUSION

In this work, we presented two state estimation frameworks
for quadruped robots, E-IS and E-InEKF, that combine LiDAR
and GPS with the proprioceptive-based InEKF [8] and IS [12].
To incorporate the LiDAR and GPS into the invariant state
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Fig. 6: Comparison of average computation times for E-IS,
E-IS (w/o GPS), P-IS across different window sizes (WS) and
their InEKF-based counterparts (E-InEKF, E-InEKF (w/o GPS),
P-InEKF). The results show that while a larger window size
increases the computation times of E-IS and E-IS (w/o GPS),
they remain comparable to the proprioceptive-only cases due
to the loosely coupled method used in this work.

estimators, we proposed an observation model for LiDAR and
GPS that satisfies the group-affine property for the invariant
estimators. Moreover, to handle the low frequency of LiDAR
measurements, we employ a parallel thread to obtain the
LiDAR odometry. To the best of our knowledge, this is the first
approach integrating LiDAR and GPS into invariant estimators
through a group-affine observation model and a parallel-thread
LiDAR odometry module. Indoor and outdoor experiments on
Hound2 [28] showed that our methods significantly reduce
z-position drift and achieve lower RPE compared to existing
proprioceptive and LiDAR-based methods [1], [3], [8], [12].

Future work will focus on integrating RGB-D or thermal
cameras and comparing them with tightly-coupled methods to
better understand the trade-offs in sensor fusion.
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[14] Y. Nisticò, J. C. V. Soares, L. Amatucci, G. Fink, and C. Semini, “MUSE:
A real-time multi-sensor state estimator for quadruped robots,” IEEE
Robot. Autom. Lett., pp. 1–8, 2025.

[15] Y. Kim, B. Yu, E. M. Lee, J. Kim, H. Park, and H. Myung, “STEP: State
estimator for legged robots using a preintegrated foot velocity factor,”
IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4456–4463, 2022.

[16] D. Wisth, M. Camurri, and M. Fallon, “VILENS: Visual, inertial, LiDAR,
and leg odometry for all-terrain legged robots,” IEEE Trans. Robot., 2022.

[17] S. Yang, Z. Zhang, Z. Fu, and Z. Manchester, “Cerberus: Low-drift
visual-inertial-leg odometry for agile locomotion,” in 2023 IEEE Int.
Conf. Robot. Autom. (ICRA), 2023, pp. 4193–4199.

[18] G. Ou, D. Li, and H. Li, “Leg-KILO: Robust kinematic-inertial-LiDAR
odometry for dynamic legged robots,” IEEE Robot. Autom. Lett., vol. 9,
no. 10, pp. 8194–8201, 2024.

[19] M. Zhang, M. Zhang, Y. Chen, and M. Li, “Imu data processing for
inertial aided navigation: A recurrent neural network based approach,”
in 2021 IEEE Int. Conf. Robot. Autom. (ICRA). IEEE, 2021, pp. 3992–
3998.

[20] G. Revach, N. Shlezinger, X. Ni, A. L. Escoriza, R. J. Van Sloun, and
Y. C. Eldar, “Kalmannet: Neural network aided kalman filtering for
partially known dynamics,” IEEE Trans. Signal Process., vol. 70, pp.
1532–1547, 2022.

[21] D. Youm, H. Oh, S. Choi, H. Kim, and J. Hwangbo, “Legged robot state
estimation with invariant extended kalman filter using neural measurement
network,” arXiv e-prints, pp. arXiv–2402, 2024.

[22] A. Schperberg, Y. Tanaka, S. Mowlavi, F. Xu, B. Balaji, and D. Hong,
“Optistate: State estimation of legged robots using gated networks with
transformer-based vision and kalman filtering,” in 2024 IEEE Int. Conf.
Robot. Autom. (ICRA). IEEE, 2024, pp. 6314–6320.

[23] C. Yu, Y. Yang, T. Liu, Y. You, M. Zhou, and D. Xiang, “State estimation
transformers for agile legged locomotion,” in 2024 IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS). IEEE, 2024, pp. 6810–6817.

[24] J. Kim, H. Kim, S. Jeong, Y. Shin, and Y. Cho, “Diter++: Diverse
terrain and multi-modal dataset for multi-robot slam in multi-session
environments,” arXiv preprint arXiv:2412.05839, 2024.

[25] S. Teng, M. W. Mueller, and K. Sreenath, “Legged robot state estimation
in slippery environments using invariant extended Kalman filter with
velocity update,” in 2021 IEEE Int. Conf. Robot. Autom. (ICRA), 2021,
pp. 3104–3110.

[26] Y. Gao, C. Yuan, and Y. Gu, “Invariant filtering for legged humanoid
locomotion on a dynamic rigid surface,” IEEE/ASME Trans. Mechatron.,
vol. 27, no. 4, pp. 1900–1909, 2022.

[27] I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and
C. Stachniss, “KISS-ICP: In Defense of Point-to-Point ICP – Simple,
Accurate, and Robust Registration If Done the Right Way,” IEEE Robot.
Autom. Lett., vol. 8, no. 2, pp. 1029–1036, 2023.

[28] Y.-H. Shin, S. Hong, S. Woo, J. Choe, H. Son, G. Kim, J.-H. Kim,
K. Lee, J. Hwangbo, and H.-W. Park, “Design of KAIST HOUND, a
quadruped robot platform for fast and efficient locomotion with mixed-
integer nonlinear optimization of a gear train,” in 2022 Int. Conf. Robot.
Autom. (ICRA) (ICRA), 2022, pp. 6614–6620.

[29] J. Sola, J. Deray, and D. Atchuthan, “A micro Lie theory for state
estimation in robotics,” arXiv preprint arXiv:1812.01537, 2018.

[30] A. De Luca and R. Mattone, “Sensorless robot collision detection and
hybrid force/motion control,” in Proceedings of the 2005 IEEE Int. Conf.
Robot. Autom. (ICRA). IEEE, 2005, pp. 999–1004.

10.15607/RSS.2012.VIII.003
10.3389/frobt.2020.00068

	Introduction
	Preliminaries
	Matrix Lie Groups and group-affine property
	State Definition
	Invariant Extended Kalman Filter For Legged Robots
	Invariant Smoother For Legged Robots

	Proposed Observation Model
	LiDAR Odometry Factor
	Observation Model for LIDAR and GPS
	LiDAR measurement model
	GPS measurement model

	E-InEKF: LiDAR-GPS fused Invariant EKF
	E-IS: LiDAR-GPS fused Invariant Smoother

	Experimental Results
	Indoor Experiments
	Outdoor Experiments

	Discussion
	Ablation Study
	Comparison between filtering and smoothing

	Conclusion
	References

