
Enhancing State Estimation in
Quadruped Robots: Multi-Sensor
Fusion for Challenging Terrains

Ylenia Nisticò

Istituto Italiano di Tecnologia, Italy
Università degli studi di Genova, Italy

Thesis submitted for the degree of Doctor of Philosophy (37◦ cycle)

February 2025

Ylenia Nisticò
Enhancing State Estimation in Quadruped Robots: Multi-Sensor Fusion for Challenging
Terrains
Candidate Student for the Ph.D. Program in Bioengineering and Robotics
Curriculum in Advanced and Humanoid Robotics, Università degli studi di Genova.
Genoa, Italy, February 2025

Tutors:
Dr. Geoff Fink, Assistant Professor
Dynamic Legged Systems (DLS) lab, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
Department of Engineering, Thompson Rivers University, Kamloops, BC, Canada

Dr. João Carlos Virgolino Soares
Dynamic Legged Systems (DLS) lab, Istituto Italiano di Tecnologia (IIT), Genoa, Italy

Dr. Claudio Semini, Principal Investigator
Dynamic Legged Systems (DLS) lab, Istituto Italiano di Tecnologia (IIT), Genoa, Italy

Head of the Ph.D. Program:
Dr. Paolo Massobrio, Associate Professor
Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS),
Università degli studi di Genova, Italy

Reviewers:
Dr. Maurice Fallon, Associate Professor
Department of Engineering Science, University of Oxford, UK

Dr. Joan Solà
Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Universitat Politècnica de
Catalunya, Barcelona, Spain

The template style of this dissertation has been adapted from Srikanth Sathyanarayana.
Copyright © 2024 by Ylenia Nisticò. All rights reserved.

https://it.overleaf.com/latex/templates/sapienza-phd-thesis-template/bftbbvwvhvxw

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing that is the outcome of work
done in collaboration with others, except as specified in the text. This dissertation
contains fewer than 65,000 words including appendices, bibliography, footnotes, tables,
and equations, and has fewer than 150 figures.

Ylenia Nisticò
Genoa, Italy, 4th February 2024

Acknowledgements

Looking back, this thesis proves that even a series of small disasters, tackled with patience
and determination, can lead to concrete results. However, reaching this point would not
have been possible without the support of many people over these three years of doctoral
studies. I would like to express my deepest gratitude to all those who have contributed
to this journey.

First and foremost, I extend my gratitude to Claudio, head of the DLS Lab, for
fostering a motivating and collaborative work environment. Your precise and thoughtful
feedback has been invaluable in shaping this work, and I deeply appreciate your consistent
support and empathy during this journey.

I am also profoundly grateful to my supervisors, Geoff and João. I have gained
invaluable knowledge and insights from your guidance and expertise, and I thank you for
your patience and encouragement throughout my research.

My sincere thanks go to the reviewers of this thesis, Prof. Maurice Fallon and Prof.
Joan Solà, whose constructive feedback significantly improved the quality of this work
and challenged me to refine its details further.

To the former members of the DLS, particularly the “Office 2 gang” – Tavo, Shamel,
Luca, and Abdo – thank you for creating such a welcoming and engaging atmosphere.
Your fellowhsip and support were pivotal in making IIT feel like the right place to pursue
this journey. A special acknowledgment goes to Chundri for his contagious positivity,
which brightened many days.

To the current members of the DLS, I am grateful for the energy and enthusiasm
you bring to the lab. Your diverse perspectives and expertise have been a source of
inspiration and motivation. A heartfelt thank you to the “Magi”, Gianluca and Marco,
for their tireless work and for a relationship that went far beyond mere professional
collaboration. Finally, thanks to Angelo, Giulio, Lorenzo, and Giovanni — you are one of
the main reasons I willingly brave the traffic of Genoa every morning to come to the office.

A big thank you to the administrative staff, especially Laura, Monica, Ines, Valentina
and Emanuele, for your constant support and for making Italian bureaucracy feel a little
less daunting.

During my time in Genoa, I was fortunate to find a second home thanks to the
incredible individuals who made me appreciate this city: the “Baciotti et al.” group.
Special thanks to Antonello, a fellow traveler through the challenges of a Ph.D.; Carlotta,
whose dynamic presence is unforgettable; Giulio R., for our stimulating brainstorming
sessions; Maria, an ideal flatmate and thoughtful “host”; and Riccardo and Paolo, whose

companionship and meticulous planning enhanced every journey.
I would also like to acknowledge my friends from “La Contea”: Chiara (the mayor),

Alessia, Andrea (Dederni), Francesco (Pepo), Gabriele (Ficognaro), Laura, Matteo,
Michele, Rachele, and the brilliant doctors Giorgio (Giorgi), Simone (Tolo), and Alessan-
dro (Gendili). The moments we shared remain among the most cherished of my life.

A special thank you goes to my lifelong friends, Martina, Nadia, Michela, and Feder-
ica, whose unwavering friendship has been a source of comfort and joy, even from afar.

Lastly, I extend my heartfelt gratitude to Giuseppe. Your constant support, patience,
and understanding have been invaluable, and I am deeply grateful for your presence
during every step of this journey.

I conclude by dedicating this thesis to my imperfect and splendid family. To my
parents, Maria Grazia and Claudio (the true Eng. Nisticò), thank you for your unwavering
belief in me and for supporting me in every decision, even the most unconventional
ones. To my sister, Laura, thank you for being a steadfast source of strength and
encouragement, helping me navigate the challenges I encountered along the way.

To all of you, thank you.

Ylenia Nisticò

Ringraziamenti

Riflettendo su questo percorso, questa tesi dimostra che anche una serie di piccoli dis-
astri, affrontati con perseveranza e determinazione, può condurre a risultati significativi.
Tuttavia, il raggiungimento di questo traguardo non sarebbe stato possibile senza il sup-
porto e la guida di numerose persone che hanno contribuito alla mia crescita durante
questi tre anni di dottorato.

Per prima cosa, desidero esprimere la mia gratitudine a Claudio, capo del DLS Lab,
per aver creato un ambiente di lavoro stimolante e collaborativo. I tuoi feedback, sem-
pre precisi e attenti, sono stati fondamentali per plasmare questo lavoro, e apprezzo
profondamente il tuo costante supporto e la tua empatia durante questo percorso.

Sono inoltre profondamente grata ai miei tutor, Geoff e João. Ho acquisito
conoscenze e competenze inestimabili grazie alla vostra guida e alla vostra esperienza, e
vi ringrazio per la pazienza e l’incoraggiamento che mi avete dimostrato nel corso della
nostra ricerca.

Un ringraziamento sincero va ai revisori di questa tesi, il Prof. Maurice Fallon e il
Prof. Joan Solà, i cui commenti costruttivi hanno migliorato significativamente la qualità
del lavoro e mi hanno spinto a perfezionarne ulteriormente i dettagli.

Ai membri passati del DLS, in particolare alla “Gang dell’ufficio 2” – Tavo, Shamel,
Luca e Abdo – grazie per aver creato un’atmosfera accogliente e stimolante. La vostra
compagnia e il vostro supporto sono stati fondamentali per farmi sentire che l’IIT fosse il
posto giusto per intraprendere questo percorso. Un ringraziamento speciale va a Chundri
per la sua positività contagiosa, che ha reso molte giornate più leggere.

Ai membri attuali del DLS, sono grata per l’energia e l’entusiasmo che portate nel lab-
oratorio. Le vostre prospettive e competenze diverse sono state fonte di ispirazione e mo-
tivazione. Un sentito ringraziamento ai “Magi”, Gianluca e Marco, per il loro instancabile
lavoro e per un rapporto che ha superato di gran lunga la semplice collaborazione pro-
fessionale. Infine, grazie ad Angelo, Giulio, Lorenzo e Giovanni: siete una delle principali
ragioni per cui affronto volentieri il traffico di Genova ogni mattina per venire in ufficio.

Sono inoltre debitrice allo staff amministrativo, in particolare a Laura, Monica, Ines,
Valentina ed Emanuele, per il loro supporto instancabile e per aver reso le complessità
della burocrazia italiana un po’ meno scoraggianti.

Durante il tempo trascorso a Genova, ho trovato una seconda casa grazie alle incred-
ibili persone che mi hanno fatto scoprire e apprezzare questa città: i “Baciotti et al.”.
Un ringraziamento speciale ad Antonello, compagno di mille “sventure” del dottorato; a
Carlotta, che con la sua energia non passa di certo inosservata; a Giulio R. per le nostre

stimolanti chiacchierate in cui si discuteva di Algebra di Lie e Centroidal MPC; a Maria,
una coinquilina ideale e “padrona di casa” impeccabile; e a Riccardo e Paolo, straordinari
compagni di viaggio e organizzatori instancabili.

Vorrei anche ringraziare i miei amici de “La Contea”: Chiara (il sindaco), Alessia,
Andrea (Dederni), Francesco (Pepo), Gabriele (Ficognaro), Laura, Matteo, Michele,
Rachele e i dottorissimi Giorgio (Giorgi), Simone (Tolo) e Alessandro (Gendili). Alcuni
dei momenti più belli della mia vita li ho vissuti insieme a voi.

Un ringraziamento speciale va alle mie amiche di sempre, Martina, Nadia, Michela e
Federica, che rimangono un punto di riferimento immutabile in ogni ritorno a casa.

Infine, desidero ringraziare Giuseppe. Grazie per il tuo supporto costante, la tua
pazienza e la tua comprensione, che sono stati inestimabili in ogni momento di questo
percorso, e non solo.

Concludo dedicando questa tesi alla mia imperfetta e splendida famiglia. Ai miei
genitori, Maria Grazia e Claudio (il vero Ing. Nisticò), grazie per il vostro continuo,
incondizionato sostegno e per aver sostenuto ogni mia singola scelta, anche quelle meno
convenzionali. E a Laura, mia sorella, un punto fermo che mi ha aiutato a superare
molte delle sfide incontrate lungo il cammino.

A tutti voi, Grazie.

Ylenia Nisticò

Abstract

Quadruped robots are increasingly important in fields such as automation, inspection,
and monitoring due to their unique capability to navigate complex and unstructured
environments. Unlike wheeled robots, legged robots can overcome various obstacles,
making them highly versatile for real-world applications. However, this versatility comes
with challenges. Robust performance in such environments depends heavily on accurate
state estimation, which provides essential information on the robot’s position, orienta-
tion, and velocity. State estimation is inherently more complex in legged robots due to
their dynamic gait and the constantly changing points of contact with the ground. The
integration of leg kinematics data can play a crucial role in improving state estimation
accuracy, as it supplies additional information that complements data from other sensors.
My research aims to advance state estimation capabilities in quadruped robots, enabling
them to autonomously recognize, interpret, and adapt to their surroundings, which is
vital for maintaining balance, perceiving obstacles, and executing complex maneuvers in
dynamic and unpredictable terrains.

To achieve this, I concentrated on developing state estimation algorithms that in-
tegrate real-time sensor data, leveraging multiple sensor streams for enhanced precision
and reliability. This integration is critical to achieving dynamic motion control and au-
tonomous operation, allowing robots to make immediate adjustments to their gait and
trajectory in response to environmental changes. Additionally, I explored the use of Lie
groups to design state estimation frameworks that employ both filtering and smoothing
techniques. The filtering approach offers real-time responsiveness by using current sen-
sor data to update the robot’s state, while the smoothing approach optimizes over a set
of past states for improved accuracy.

The primary outcomes of my research are embodied in three major contributions.
The first is MUSE, a MUlti-sensor State Estimator designed specifically for quadruped
robots. MUSE integrates data from a range of sensors, including Inertial Measurement
Units (IMUs), encoders, force/torque sensors, cameras, and LiDARs, to provide accurate,
reliable, and real-time state estimation even in challenging real-world environments with
uneven or slippery surfaces. MUSE incorporates a dedicated slip detection module, that
enables the robot to detect slippery terrain and correct the estimate by discarding the
unreliable leg odometry measurements. Additionally, MUSE is built to be modular and
flexible, allowing it to interface with various robot platforms and sensor configurations,
making it adaptable to different applications and terrains. The real-time capabilities
were demonstrated in real-time operations, where MUSE provided online feedback to the

ix

locomotion controller. Furthermore, MUSE is developed as an open-source tool, encour-
aging other researchers and engineers to use, modify, and build upon this work to further
advance the field. The second major contribution is the development of frameworks for
invariant state estimation, specifically a multi-sensor Invariant Extended Kalman Filter
(InEKF) and an Invariant Smoother (IS). Both frameworks utilize Lie groups to incor-
porate leg kinematics, LiDAR positional data, and GPS coordinates (when available) to
refine the robot’s state estimate and determine its global position. These frameworks are
among the first to successfully integrate both proprioceptive (internal) and exteroceptive
(external) measurements for invariant state estimation in legged robots, representing a
significant innovation in the field. The third and final major contribution is the extensive
testing of the proposed algorithms on multiple robots of varying sizes, ranging from the
21 Kg Unitree Aliengo to the 90 Kg HyQ robot from the Italian Institute of Technology.

Looking ahead, future research will focus on enhancing individual components of
these frameworks to improve overall estimation performance. For instance, advanced
terrain estimation will play a key role in achieving fully autonomous operations. Esti-
mating parameters such as the friction coefficient, as well as the geometrical and physical
properties of the terrain (e.g. inclination and softness), will enable the robot to make
real-time adjustments based on the terrain it encounters. Additionally, developing in-
creasingly reliable mapping techniques will support long-term autonomy by allowing the
robot to build a comprehensive understanding of its environment, reducing its reliance
on external guidance or teleoperation. These advancements are expected to push the
boundaries of autonomy in legged robots, allowing them to navigate complex environ-
ments independently, maintain stability on challenging terrain, and perform sophisticated
tasks with minimal human intervention.

Keywords: legged robots, state estimation, sensor fusion, localization, odometry.

Contents

List of Figures xiv

List of Tables xvi

Acronyms xviii

1 Introduction 1
1.1 Preface . 1
1.2 Motivation . 1
1.3 Contribution . 3
1.4 Organization of the Thesis . 6

2 State of the Art 7
2.1 Proprioceptive State Estimation . 9

2.1.1 Proprioceptive State Estimation on Difficult Terrains 13
2.2 Exteroceptive State Estimation . 16

2.2.1 Visual Odometry and SLAM . 17
2.2.2 LiDAR Odometry and SLAM 20

2.2.2.1 Direct matching . 21
2.2.2.2 Feature-based matching 23

2.3 Multi-Sensor State Estimation . 24
2.3.1 Multi-Sensor State Estimation for Legged Robots 27

2.4 Summary and Discussion . 30

3 Slip Detection on Quadruped Robots 32
3.1 Preface . 32
3.2 Introduction . 33
3.3 Contribution . 33
3.4 Outline . 35
3.5 Modelling and Sensing . 35
3.6 Contact Estimation . 36
3.7 Baseline Approach . 36

3.7.1 Single-Leg Slip Detection . 37
3.7.2 Multiple-Leg Slip Detection . 37
3.7.3 Drawbacks of the Baseline Approach 37

3.8 Proposed Slip Detection Algorithm . 38
3.9 Results . 40

xi

3.9.1 Simulation Results: Trotting onto Patches of Ice 40
3.9.2 Experimental Results on the HyQ robot: Crawling on a Slippery

Surface . 42
3.10 Discussion . 44

3.10.1 Limitations . 44
3.11 Conclusion . 45

4 The Real-Time Multi-Sensor State Estimator MUSE 47
4.1 Preface . 47
4.2 Introduction . 48
4.3 Contributions . 51
4.4 Outline . 52
4.5 Theoretical Background . 52

4.5.1 Kalman Filter . 52
4.5.1.1 Linear Time-Varying Continuous-Time Kalman Filter . . 53
4.5.1.2 Linear Time-Varying Discrete-Time Kalman Filter . . . 54

4.5.2 Nonlinear Kalman Filters . 55
4.5.2.1 Extended Kalman Filter 57

4.5.3 Nonlinear Observer . 60
4.5.4 eXogeneous Kalman Filter . 64

4.5.4.1 Design of the XKF 65
4.5.5 Summary of the Theoretical Background 66

4.6 MUSE Formulation . 67
4.6.1 Robot Models . 68
4.6.2 Exteroceptive Odometry . 69
4.6.3 Contact Estimation . 70
4.6.4 Leg Odometry . 71
4.6.5 Slip Detection . 71
4.6.6 Attitude Observer . 72

4.6.6.1 Nonlinear Observer 72
4.6.6.2 eXogeneous Kalman Filter 73

4.6.7 Sensor Fusion . 75
4.6.8 Considerations about time execution 76

4.7 Experimental Results . 77
4.7.1 First results: Offline evaluation 77

4.7.1.1 Aliengo walking up and down stairs 78
4.7.1.2 Aliengo walking on uneven and slippery terrain 80

4.7.2 Main results: Online evaluation and Benchmarking 82
4.7.2.1 Online evaluation: Closing the loop with the controller . 82
4.7.2.2 Offline evaluation and benchmarking: FSC Dataset

with ANYmal B300 85
4.8 Discussion . 87

4.8.1 Limitations . 88
4.9 Conclusion . 89

5 Invariant State Estimation on Lie-Groups 90
5.1 Preface . 90
5.2 Introduction . 91
5.3 Contributions . 93
5.4 Outline . 94
5.5 Theoretical Background . 94

5.5.1 Lie Theory . 94
5.5.2 Group-Affine Properties . 96
5.5.3 Invariant Filtering vs. Invariant Smoothing 97
5.5.4 Summary of the Theoretical Background 98

5.6 Robot Models and State Definitions . 98
5.6.1 Continuous-Time System Dynamics 100

5.7 Invariant Extended Kalman Filter formulation 102
5.7.1 Prediction Step . 103
5.7.2 Right-Invariant Measurement Model 103

5.7.2.1 Forward Kinematics Measurement Model 103
5.7.2.2 LiDAR Measurement Model 104
5.7.2.3 GPS Measurement Model 104

5.7.3 Augmented Right-Invariant Observation and Innovation 105
5.7.3.1 Update Equations . 105

5.7.4 Addition and Removal of Contact Points 106
5.7.4.1 Removing Contact Points 106
5.7.4.2 Adding Contact Points 107

5.7.5 Summary of the Invariant Extended Kalman Filter 108
5.8 Invariant Smoother formulation . 108

5.8.1 Derivation of the Cost Functions 109
5.8.1.1 Prior Cost Function 109

5.8.2 Propagation Cost Function . 111
5.8.3 Observation Cost Function . 113
5.8.4 Contact Loop Closure Cost Function 114
5.8.5 Summary of the Invariant Smoother 116

5.9 Slip Rejection Method . 116
5.10 Experimental Results . 118

5.10.1 Indoor Experiment . 118
5.10.2 Outdoor Experiment . 120

5.11 Discussion . 120
5.11.1 Considerations about time execution 122
5.11.2 Limitations . 124

5.12 Conclusion . 125

6 Conclusion and Future Works 127
6.1 Conclusion . 127
6.2 Future Works . 128

Bibliography 131

A Appendix 148
A.1 Software Architecture . 149
A.2 Key Features and Operational Principles 150
A.3 Integration of MUSE into DLS2 Framework 151

A.3.1 Plugin structure in DLS2 . 151
A.3.2 Modules in MUSE . 151

A.3.2.1 Low-level Estimation Modules 151
A.3.2.2 High-level Estimation Modules 152

A.4 Conclusion . 153

B Publications 155
B.1 List of Publications . 155

List of Figures

2.1 Legged Robots Performing Real-World and High-Difficulty Tasks 8
2.2 Examples of proprioceptive sensors . 10
2.3 Examples of exteroceptive sensors . 16
2.4 KISS-ICP and LeGO-LOAM . 22
2.5 VINS-Mono and FAST-LIO2 . 25
2.6 Pronto and VILENS . 28

3.1 The HyQ robot . 35
3.2 ∆V vs. ∆V . 39
3.3 Desired and actual foot velocity . 40
3.4 Simulation with HyQ . 41
3.5 ∆V and ∆P in simulation . 41
3.6 Comparison between the flags in simulation 42
3.7 Experiment with HyQ . 43
3.8 ∆V and ∆P in the experiment . 43
3.9 Comparison between the flags during the experiment 44

4.1 Overview of the MUSE state estimation pipeline. 67
4.2 Robots used to assess the performance of MUSE 68
4.3 Robot reference Frames . 69
4.4 Aliengo climbing stairs . 79
4.5 Aliengo climbing stairs: GT vs MUSE 79
4.6 Aliengo walking on uneven and slippery terrain 80
4.7 Aliengo walking on uneven and slippery terrain: GT vs. MUSE 81
4.8 Aliengo in a closed-loop experiment . 82
4.9 Aliengo in a closed-loop experiment: GT pose vs. MUSE pose 83
4.10 Aliengo in a closed-loop experiment. GT linear velocity vs. MUSE linear

velocity . 83
4.11 FSC Dataset: GT vs. MUSE . 86

5.1 Hound and Hound2 robots . 99
5.2 Contact Loop model . 115
5.3 Structure of the InEKF and IS . 117
5.4 Indoor Experiment with Hound . 119
5.5 Indoor Experiment: Ground Truth vs. Estimated Position 119
5.6 Outdoor Experiment with Hound2 . 121
5.7 Outdoor experiment . 122
5.8 Computation Time . 123

xv

A.1 Schematic of the DLS2 Software Architecture 150
A.2 Dynamic Activation and Deactivation of Modules in DLS2 153

List of Tables

4.1 Aliengo climbing stairs . 78
4.2 Aliengo on uneven and slippery terrain 81
4.3 Aliengo in a closed loop experiment . 84
4.4 FSC Dataset . 86

5.1 ATE and RPE in the indoor experiment 119
5.2 ATE and RPE in the outdoor experiment 120
5.3 ATE and RPE for IS with different WS and for the InEKF 124

xvii

Acronyms

API Application Programming Interface

ATE Absolute Trajectory Error

BCH Baker-Campbell-Hausdorff

CL Contact Loop

CPU Central Processing Unit

DDS Data Distribution Service

DLIO Direct LiDAR Inertial Odometry

DLO Direct LiDAR Odometry

DOFs Degrees of Freedom

EKF Extended Kalman Filter

FSC Fire Service College

GES Globally Exponentially Stable

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics processing unit

GRF Ground Reaction Force

GRFs Ground Reaction Forces

GT Ground Truth

HyQ Hydraulically actuated Quadruped

ICP Iterative Closest Point

IEKF Iterated Extended Kalman Filter

xviii

IIT Italian Institute of Technology

IMU Inertial Measurement Unit

InEKF Invariant Extended Kalman Filter

IS Invariant Smoother

JS Joint State

k-d k-dimensional

KAIST Korean Advanced Institute of Science and Technology

KD Kinematics/Dynamics

KF Kalman Filter

KILO Kinematic Inertial Leg Odometry

KISS Keep It Small and Simple

LF Left Front

LH Left Hind

LiDAR Light Detection and Ranging

LIO LiDAR Inertial Odometry

LKF Linearized Kalman Filter

LOAM Lidar Odometry and Mapping

LTV Linear Time-Varying

MAP Maximum A Posteriori

MPC Model Predictive Controller

MUSE MUlti-sensor State Estimator

NLO Nonlinear Observer

ORB Oriented FAST and Rotated BRIEF

PCA Principal Component Analysis

PD Proportional-Derivative

PE Persistency of Excitation

PF Particle Filter

QoS Quality of Service

RA-L Robotics and Automation Letters

RF Right Front

RGB Red Green Blue

RGB-D Red Green Blue-Depth

RH Right Hind

RMSE Root Mean Square Error

ROS Robot Operating System

RPE Relative Pose Error

SAM Smoothing and Mapping

SD Slip Detection

SF Sensor Fusion

SLAM Simultaneous Localization And Mapping

SR Slip Rejection

SVO Semi-direct Visual Odometry

TSIF Two-State Information Filter

UAVs Unmanned Aerial Vehicles

UKF Unscented Kalman Filter

VILO Visual Inertial Leg Odometry

VINS Visual Inertial system

VIO Visual Inertial Odometry

WS Window Size

XKF eXogeneous Kalman Filter

Chapter 1

Introduction

1.1 Preface

In this thesis, I chose to use “we” instead of “I”, to acknowledge that the research
presented was enriched thanks to the valuable assistance of researchers and engineers
of the DLS lab. Although I developed the core aspects of the project, the guidance,
feedback, and discussions with my colleagues contributed significantly to its success.
My exact contributions to each work, along with the contributions of my colleagues, are
detailed in the preface of each chapter.

1.2 Motivation

In recent years, legged robots have emerged as a powerful alternative to traditional
wheeled or tracked robots, particularly for navigating complex, unstructured environ-
ments. Unlike wheeled robots, which are highly efficient on flat surfaces, legged robots
offer a significant advantage in rough, uneven, or unpredictable terrains. Their ability
to step over obstacles, adjust to varying ground conditions, and maintain balance makes
them ideal for applications ranging from search and rescue missions in disaster-stricken
areas to planetary exploration. Quadruped robots, in particular, have garnered attention
for their ability to achieve both stability and maneuverability in challenging environments.

The unique capabilities of legged robots stem from their biologically inspired design,
mimicking the locomotion of animals such as dogs, horses, and insects. These robots can
dynamically adjust their gait, posture, and limb movements to interact with the terrain

1

1.2. Motivation

more effectively than wheeled or tracked systems. This advantage becomes critical in
environments where obstacles, debris, or irregular surfaces would immobilize a wheeled
robot. In scenarios such as forested areas, mountainous terrain, or urban ruins, where
human intervention may be limited or unsafe, legged robots have a clear edge.

However, the successful operation of legged robots in such environments hinges on
one essential component: state estimation, which provides the real-time data needed
to navigate and adapt to unstructured environments. Accurately estimating the robot’s
state, including position, orientation, velocity, and interaction with the environment, is
critical for robust, autonomous navigation, enabling the robot to perceive surroundings,
maintain balance, and execute complex maneuvers.

State estimation is essential for (1) Perception and Localization: state estimation
informs the robot of its current position, orientation, and motion relative to its sur-
roundings. This is crucial for understanding the environment and for making decisions
about movement and obstacle avoidance. Without accurate localization, the robot
would be unable to navigate autonomously; (2) Global Localization: in large or outdoor
environments, legged robots must often navigate using global reference frames. State
estimation integrates sensor data with environmental maps, allowing for robust local-
ization over long distances. This capability is essential for tasks such as exploration or
rescue operations, where the robot needs to understand both its local surroundings and
its position relative to the broader environment in a known map; (3) Simultaneous Lo-
calization And Mapping (SLAM): this process involves building a spatial representation
of the environment while simultaneously localizing the robot within that map. SLAM
techniques combine data from sensors such as cameras and Light Detection and Ranging
(LiDAR), to create and update these maps in real time. This helps the robot identify
obstacles, plan paths, and adapt to dynamic or unknown environments; (4) Obstacle
Avoidance: with integrated perception systems such as cameras, LiDAR sensors, and
depth sensors, quadruped robots rely on state estimation to detect and avoid obstacles
in their path. Accurate state information allows for timely adjustments in trajectory to
prevent collisions, enhancing the robot’s ability to move through cluttered and dynamic
environments; (5) Dynamic Stability Control: maintaining stability during locomotion is
one of the most critical challenges for quadruped robots. State estimation helps track
the robot’s center of mass and the position of each limb, enabling real-time adjustments
to prevent falls or tipping, particularly on difficult terrain. (6) Fault Detection and Re-
covery: state estimation also contributes to fault detection by monitoring sensor data
or robot behavior inconsistencies. When issues are detected, the robot can switch to
backup sensors or employ recovery strategies, ensuring continued operation even in the

2

1.3. Contribution

face of sensor failure or environmental challenges.
In this context, our research focused on advancing the state estimation capabilities

of quadruped robots. We aimed to improve the robots’ ability to recognize and take
information from the environment, with the objective of enabling more reliable and
complex autonomous behaviors in the future. By optimizing the algorithms for state
estimation and enhancing the coordination of diverse sensor systems, such as Inertial
Measurement Unit (IMU), cameras, and LiDARs, we were able to enhance the pose and
velocity estimation accuracy of quadruped robots walking in challenging terrain, which
improved their navigation capabilities.

In addition, our work focused on organizing and online processing sensor data, al-
lowing for the integration of multiple data streams to ensure precise and reliable state
estimation. This enhanced state estimation was critical for facilitating dynamic motion
control, enabling the robots to safely and autonomously operate in complex, unstructured
environments (Chapter 4).

We also explored Lie groups to design two invariant state estimation frameworks
that leverage filtering and smoothing approaches (Chapter 5). Through a comparative
analysis between these two approaches, we highlight the trade-offs between real-time
responsiveness and estimation accuracy, providing insights into the strengths and limi-
tations of both techniques for quadruped robot navigation.

1.3 Contribution

Over the three years of this PhD research, we investigated and developed various ap-
proaches to address the challenges of state estimation for legged robots. The following
core scientific questions guided the design and development of our state estimation
framework:

1. How can we enable a robot to perceive and adapt to its surrounding environment,
specifically in detecting whether the terrain it traverses is slippery?

2. Once detected, in what ways can slip detection enhance the accuracy and reliability
of state estimation?

3. What are the most effective methods for achieving robust, accurate, and real-time
state estimation?

This thesis focuses on addressing some of these questions, particularly those related to
slippery terrain detection and achieving robust, accurate state estimation. A remaining

3

1.3. Contribution

question is also: How do dynamic environments, such as moving objects or subjects,
influence the performance of state estimation? The answer to this is outlined as a
potential direction for future research.

Over the course of this research, we developed several approaches to address the chal-
lenges of state estimation for quadruped robots. Our contributions focus on integrating
multiple sensors, handling slippery and uneven terrain, and achieving robust, real-time
performance. The primary contributions of this thesis are summarized as follows:

• Development of a MUlti-sensor State Estimator (MUSE). We designed
MUSE, a state estimator for quadruped robots that integrates data from multiple
sensors to achieve accurate and reliable state estimation. MUSE is tailored to
address real-world challenges, such as navigating slippery or uneven terrain. This
work is described in Chapter 4 and is the subject of a central publication currently
under review for IEEE Robotics and Automation Letters (RA-L). Preliminary results
of MUSE were also presented at the 2024 I-RIM 3D conference.

Specifically, key features and advancement of MUSE include:

– Slip detection module: to the best of our knowledge, MUSE is the first multi-
sensor (including proprioceptive and exteroceptive sensors) state estimation
pipeline to incorporate a dedicated slip detection module. This module is
crucial for enabling the robot to detect and adapt to slippery terrain. A
detailed description of this module is provided in Chapter 3, and it has been
separately published in one of our previous publications (Nisticò et al. [1]).

– Real-Time operation: Unlike previous works such as VILENS (Wisth et al.
[2]), WALK-VIO (Lim et al. [3]), and STEP (Kim et al. [4]), which are de-
scribed in Chapter 2, we proved that MUSE can provide real-time feedback to
the locomotion controller. This capability was demonstrated in experiments
conducted on the Aliengo robot, enabling responsive and adaptive navigation.

– Comprehensive Evaluation: MUSE was validated through both online and
offline experiments across different platforms and environments. We tested
it on the Aliengo robot (Unitree [5]) in challenging indoor scenarios and on
the ANYmal B300 robot using the Fire Service College (FSC) Dataset (Wisth
et al. [2]). Our results show significant improvements compared to other state
estimators for legged robots. Specifically: a 67.6% reduction in translational
error compared to Pronto (Camurri et al. [6]), a 26.67% reduction compared
to VILENS (Wisth et al. [2]), and a 45.9% reduction in absolute trajectory

4

1.3. Contribution

error compared to TSIF (Bloesch et al. [7]). Additionally, MUSE outperforms
Direct LiDAR Inertial Odometry (DLIO) (Chen et al. [8]), which is a LiDAR-
inertial odometry algorithm, in rotational error and computation frequency.

• Development of a Right-Invariant Extended Kalman Filter (InEKF) and
a Right-Invariant Smoother (IS). We proposed a Right-InEKF and a Right-
IS that utilize Lie groups to fuse data from leg kinematics, LiDAR odometry, and
Global Positioning System (GPS) coordinates (when available). These frameworks
effectively address the position drift inherent in proprioceptive-only methods. This
work, conducted in collaboration with the Korean Advanced Institute of Science
and Technology (KAIST), is described in Chapter 5, and a paper is currently under
review for IEEE RA-L. The key contributions of this work are twofold:

– Integration of LiDAR and GPS: to the best of our knowledge, this is the first
work to incorporate both LiDAR odometry and GPS into the InEKF for legged
robots, and it is the first work to include exteroceptive measurements in an
IS framework for legged robots. To handle LiDAR’s low frequency (approx-
imately 10 Hz), we implemented Iterative Closest Point (ICP) registration
from (Vizzo et al. [9]) in a parallel thread, ensuring the estimator maintains
fast computation times.

– Verification across platforms: We validated these frameworks on the
Hound and Hound2 robots (Shin et al. [10]) in both indoor and outdoor
environments, while also providing a comparison between the performance
of the two proposed methods. Additionally, we benchmarked the obtained
results against two state-of-the-art LiDAR-based odometry systems (Vizzo
et al. [9], Xu and Zhang [11]), demonstrating the robustness and accuracy
of our approach.

• Extensive testing of our algorithms and frameworks on different robots with
varying actuation types and sizes. Specifically, the slip detection algorithm was
tested on the 90 Kg Hydraulically actuated Quadruped (HyQ) robot; MUSE
was evaluated on electrically actuated robots, including the 21 Kg Aliengo and
the 30 Kg ANYmal. Finally, the invariant state estimation frameworks were
tested on the 45 Kg Hound and on the 50 Kg Hound2, which are also electrically
actuated.

During my Ph.D., I also had the privilege of contributing to developing a software
framework for mobile robots, DLS2. This framework played a crucial role in the real-

5

1.4. Organization of the Thesis

ization of the MUSE project, as it was employed to manage real-time communication
between the sensors and the state estimator. Although not directly related to state esti-
mation, I participated in the development of this framework (in particular in the testing
and refinement) which is briefly described in Appendix A.

1.4 Organization of the Thesis

This thesis is organized as follows:

• Chapter 2 provides an overview of the state of the art in state estimation for
legged robots, highlighting the challenges and opportunities in this field.

• Chapter 3 introduces the concept of slip detection and its importance for state
estimation in quadruped robots. We present a novel approach to slip detection
based on the analysis of leg kinematics data.

• Chapter 4 describes the development of MUSE, a multi-sensor state estimator
designed specifically for quadruped robots. We detail the architecture, algorithms,
and performance evaluation of MUSE.

• Chapter 5 presents the development of InEKF and IS, two invariant frameworks
for state estimation that leverage Lie groups to integrate leg kinematics, LiDAR
data, and GPS coordinates in the measurement model.

• Chapter 6 concludes the thesis by summarizing the key findings and contributions,
discussing the implications of the research, and outlining potential directions for
future work.

• Appendix A provides additional information on the DLS2 software framework,
which was used to support the development of the MUSE project.

• Appendix B contains the list of publications achieved during the Ph.D.

6

Chapter 2

State of the Art

In recent years, legged robots have gained significant attention due to their ability to
traverse complex terrains where wheeled or tracked robots struggle. These robots have
found applications across diverse fields, for instance: in rescue operations, such as ANY-
mal by ANYbotics (Fankhauser and Hutter [12]), depicted in Fig. 2.1a, designed to
navigate hazardous environments; in inspection tasks, exemplified by Spot (Boston Dy-
namics Inc. [13]), deployed at Chernobyl to assess radiation levels (Ackerman [14]), as
shown in Fig. 2.1b; in agriculture, as seen in the Hydraulically actuated Quadruped
(HyQ) robot HyQReal (Semini et al. [15]) from the Italian Institute of Technology (IIT),
aiding in the Vinum project for vineyard pruning (Semini and Gatti [16], Guadagna
et al. [17]), as demonstrated in Fig. 2.1c; and even in space exploration, where DFKI’s
CREX robot, in Fig. 2.1d, demonstrates the potential for extraterrestrial missions (DFKI
Robotics Innovation Center [18], Dettmann et al. [19]). More recently, the quadruped
robot VERO (Amatucci et al. [20]) from the IIT, was employed for autonomous litter col-
lection, specifically targeting cigarette butts, the second most common waste worldwide.
Based on the Aliengo Unitree robot [5] equipped with a vacuum cleaner, VERO was
successfully tested in scenarios that challenge locomotion and detection skills, including
beaches in the city of Genoa, Italy, as shown in Fig. 2.1e (Ackerman [21]). Beyond these,
humanoid robots such as the Boston Dynamics’ Atlas have showcased exceptional agility
and coordination by performing parkour [22] (Fig. 2.1f), while robots as Unitree G1 [23],
in Fig. 2.1g and Figure AI’s humanoid robot [24], shown in Fig. 2.1h, demonstrate re-
markable dexterous capabilities and dynamic movements, highlighting advancements in
robotics aimed at human-centric tasks and agile locomotion.

7

Chapter 2. State of the Art

(a) ANYmal by ANYbotics operating in a fire
scenario.

(b) Spot by Boston Dynamics Inc. operating
in Chernobyl.

(c) HyQReal by IIT operating in a vineyard in
Piacenza, Italy.

(d) CREX by DFKI Robotics Innovation
Center operating in a space-like environ-
ment.

(e) VERO robot by IIT in a beach of Vernaz-
zola, Genoa, Italy.

(f) Atlas by Boston Dynamics performing
parkour.

(g) G1 by Unitree demonstrating dynamic
movements capabilities.

(h) Figure AI’s humanoid robot show-
casing dexterous capabilities.

Figure 2.1: Legged Robots Performing Real-World and High-Difficulty Tasks.

To autonomously navigate these challenging environments, legged robots must rely
on robust and accurate state estimation. The state of a robot refers to its internal and
external configuration, encompassing parameters such as position, orientation, velocity,
and other relevant factors that describe the robot’s motion and behavior over time.

8

2.1. Proprioceptive State Estimation

State estimation is a key and fundamental challenge in robotics, as it provides the
essential information for stable locomotion, precise navigation, and effective interaction
with the environment (Barfoot [25]). In the context of legged robots, accurate and reli-
able state estimation becomes even more critical due to the complex dynamics involved
in locomotion, the need to maintain balance, and the robot’s ability to traverse uneven
and uncertain terrain. Legged robots experience frequent contact changes with the en-
vironment, nonlinear dynamics, and disturbances from various sources. These factors
require robust state estimation algorithms that can handle the inherent uncertainties
and ensure precise control over the robot’s movements. At the heart of this problem lies
the integration of sensory information. A legged robot relies on two primary classes of
sensors for state estimation: proprioceptive sensors, which provide information about the
robot’s internal state (e.g., joint angles, motor currents, and inertial measurements), and
exteroceptive sensors, which capture data about the external environment (e.g., cam-
eras, LiDARs, and Global Navigation Satellite System (GNSS) receivers). Furthermore,
multi-sensor fusion plays a crucial role in combining these sources of data to enhance the
robustness and accuracy of state estimation, especially in environments where a single
sensor modality may be insufficient or prone to failure.

To address the complexities of state estimation in legged robots, researchers have
developed a range of filtering and smoothing techniques. These methods, including
Kalman Filters, Particle Filters, and advanced graph-based optimization approaches, are
used to process and fuse sensor data, enabling the robot to maintain an accurate estimate
of its state across time.

This state-of-the-art review is structured as follows:

• Section 2.1 focuses on the internal sensing modalities and methods that rely on
proprioceptive sensors.

• Section 2.2 covers exteroceptive sensors such as cameras, and LiDAR, along with
the algorithms that process this data for localization and environmental mapping.

• Section 2.3 explores how proprioceptive and exteroceptive sensors are fused to
provide a more comprehensive and accurate state estimate, including the use of
filtering and smoothing techniques to handle uncertainties.

2.1 Proprioceptive State Estimation

Most of the modern legged robots are equipped with IMUs, joint encoders, and
force/torque sensors (Fig. 2.2) to monitor their internal state and interaction with

9

2.1. Proprioceptive State Estimation

(a) P-1775 IMU from
KVH Industries [26].

(b) AEDA-3300 Series from Avago
Technologies [27].

(c) HEX 6-Axis Force/-
Torque Sensor from Tech-
Labs [28].

Figure 2.2: Examples of proprioceptive sensors. From left to right: IMU sensor, encoder, and
force/torque sensor.

the environment. These devices provide low-dimensional signals at high rates (250–
1000 Hz), making them ideal for real-time state estimation. However, the integration
of these sensors poses several challenges, including sensor noise, drift, and the need
to model complex dynamics accurately. To address these issues, researchers have
developed a range of filtering and estimation techniques tailored to legged robots.

Proprioceptive state estimators rely on kinematic sensors, contact detection, and
inertial measurements to estimate the robot’s pose, velocity, and contact points. Kine-
matic sensors measure the internal configuration of the robot and often directly depend
on the corresponding state. The typical kinematic sensor is the encoder that measures
the joint angles of the robot. Force sensors can be employed to measure internal forces
as joint forces or to measure external forces such as contact forces. There are many
different types of sensors including optical, resistive, capacitive, or piezoelectric sensors.
One difficulty involves calibrating the force sensor, as the lack of a precise reference
often requires the manufacturer to carry out the calibration, and it cannot be adjusted
afterwards. This is one reason why force sensors represent a less reliable source of infor-
mation when it comes to state estimation. Consequently, force sensors are often used
for estimating the contact state, i.e., whether a foot is in contact with the ground or
not, while torques are identified in other ways, e.g., by using the motor currents, as in
the Aliengo quadruped robot (Unitree [5]). Inertial sensors, such as accelerometers and
gyroscopes, often part of an IMU, provide information about the robot’s linear acceler-
ation and angular velocity. These sensors are crucial for estimating the robot’s motion
and orientation, particularly during dynamic maneuvers and locomotion (Bloesch and
Hutter [29]).

In terms of fusion of proprioceptive sensor modalities, most works use Kalman filters
because of their simple implementation, low memory usage due to the recursive formula-

10

2.1. Proprioceptive State Estimation

tion, and undelayed estimation (i.e. a full update is generated after every step). Another
possibility of information fusion is based on Maximum A Posteriori (MAP) optimization
over the full data (Barfoot [25], p. 42). This often provides more accurate estimates but
can be computationally more expensive and can come with an increased time delay until
the estimates are available. There are also many intermediate or combined approaches,
such as sliding window estimation approaches (Leutenegger et al. [30]).

One of the first notable works to propose a state estimator tailored for legged robots
was done by Bloesch et al. [31]. In this paper, the authors presented a state estimation
framework for legged robots that enables the estimation of the robot’s complete pose
without relying on assumptions about the environment’s geometry. The state estimator
employs an Observability Constrained Extended Kalman Filter (EKF) that combines
kinematic encoder data and onboard IMU measurements. By incorporating the absolute
position of all footholds into the filter state, the method accounts for uncertainties due
to intermittent ground contact. The filter simultaneously estimates both the footholds’
positions and the robot’s body pose. Additionally, the framework ensures that the
linearized filter maintains the same observability characteristics as the nonlinear system,
crucial for accurate state estimation. The approach has been tested in simulation and
validated experimentally on the StarlETH (Hutter et al. [32]) quadrupedal robot and
tested in short indoor experiments.

Later, Rotella et al. [33] extended this work to humanoid robots. The authors pro-
posed a state estimation framework for humanoid robots that uses only propriocep-
tive sensors and leg kinematic information. The approach extends previous work on
quadrupeds with point feet by incorporating the rotational constraints from the flat feet
of humanoid robots. The EKF accommodates contact switching and operates without
assumptions about gait or terrain, making it suitable for any humanoid platform. A non-
linear observability analysis showed that adding rotational constraints simplifies singular
cases and enhances the system’s observability. Tests on a simulated walking dataset
demonstrated the performance improvement of the flat-foot filter and confirmed the
observability analysis results.

Bloesch et al. [7] proposed a filter that relies entirely on residual-based modeling,
offering greater flexibility in handling available information. While related to the Kalman
filter, their approach bridges the gap towards batch optimization and incorporates ad-
vanced techniques such as robust weighting for outlier rejection. They derived recursive
filter equations with computational complexity comparable to the extended information
filter, a Kalman filter variant. The effectiveness of the proposed method was demon-
strated experimentally on two mobile robotic state estimation problems.

11

2.1. Proprioceptive State Estimation

In 2020, Fink and Semini [34] developed a low-level state estimator for quadrupedal
robots, focusing on attitude estimation, leg odometry, ground reaction forces, and con-
tact detection. The state estimator consists of three main components. First, a nonlinear
observer is used to estimate the robot’s attitude by fusing inertial data. This attitude
estimator is globally exponentially stable and can handle large initial state errors, mak-
ing it particularly useful when the robot needs to recover after falling. Unlike traditional
EKF, which may diverge in such situations, this observer remains stable. Second, leg
odometry is calculated using data from encoders, force sensors, and torque sensors in
the robot’s joints. Lastly, inertial measurements and leg odometry are fused to estimate
the robot’s linear position and velocity. The state estimator is validated using data from
the HyQ robot (Semini et al. [35]).

Another notable work on proprioceptive state estimation is from Hartley et al. [36].
In this work, the authors propose a contact-aided InEKF, based on Lie group theory and
invariant observer design. The filter estimates the robot’s pose, velocity, and contact
points by combining contact-inertial dynamics with forward kinematic corrections. The
error dynamics of the proposed approach follow a log-linear autonomous differential
equation, which leads to several important outcomes. The observable state variables can
converge with a domain of attraction that does not depend on the robot’s trajectory,
improving the overall robustness of the system. Unlike the standard EKF, the linearized
error dynamics and observation model are independent of the current state estimate,
which results in enhanced convergence properties. Furthermore, the local observability
matrix remains consistent with the underlying nonlinear system, ensuring more reliable
state estimation. The authors also showed how to include IMU biases, handle contact
point changes, and formulate world-centric and robot-centric versions of the filter. The
InEKF was compared to the commonly used quaternion-based EKF in both simulations
and experiments with a Cassie-series bipedal robot [37].

Based on this work, Ramadoss et al. [38] introduced a contact-aided inertial-
kinematic floating base state estimation method for humanoid robots, utilizing the
concept of matrix Lie groups to represent both the evolution of the state and the obser-
vations. The state is represented using a matrix Lie group, which encapsulates the base’s
position, orientation, and velocity, as well as the positions and orientations of the feet and
biases in the IMU. Observations were taken from the relative positions and orientations of
the feet using forward kinematics. Due to the choice of uncertainty parametrization, the
estimator exhibited rapid convergence even with large initialization errors. The method
was experimentally validated on the iCub humanoid robot platform (Metta et al. [39]).

12

2.1. Proprioceptive State Estimation

2.1.1 Proprioceptive State Estimation on Difficult Terrains

One of the most crucial pieces of information for a legged robot navigating unstructured
and uneven terrains is reliable contact estimation. While many legged robots detect
contact using dedicated foot sensors, this approach can be impractical for agile robots
operating in the field, as these sensors are prone to deterioration and failure. For this
purpose, Camurri et al. [40] proposed a robust leg odometry module that does not rely
on contact sensors. Instead, the system infers foot impacts using internal force sensing
and incorporates this information to improve the kinematic-inertial state estimation
of the robot’s body. The results showed that this approach performs comparably to
systems equipped with foot sensors. Extensive experiments were conducted over more
than an hour using the 90 Kg HyQ quadrupedal robot, performing various gaits to
validate the robustness and accuracy of the proposed method.

To address the challenges of unstable terrain, Bloesch et al. [41], introduced a state
estimation approach for legged robots that leverages stochastic filtering techniques. The
main concept is to utilize information from the kinematic constraints provided by inter-
mittent ground contacts and fuse it with inertial measurements. To achieve this, the
authors developed an Unscented Kalman Filter (UKF) based on a well-defined stochastic
model. The robustness of the filter was improved by incorporating an outlier rejection
mechanism during the update step. The paper also includes a nonlinear observabil-
ity analysis, simplifying the observability matrix by considering the unique properties of
3D rotations. This analysis showed that – apart from the global position and yaw
angle – most states are observable, even when only one foot is in contact with the
ground. The filter’s performance was evaluated on a quadruped robot traversing uneven
and slippery terrain.

Dynamic locomotion on unstructured and uneven terrain presents significant chal-
lenges for legged robots, especially when dealing with slippery surfaces, where traditional
state estimation and control algorithms often struggle due to the no-slip assumption.

In (Jenelten et al. [42]), the author tackled the issue of slip by separately addressing
slip detection and recovery. The authors introduced a probabilistic slip estimator using a
Hidden Markov Model to detect slip events. For recovery, the paper proposes the use of
impedance control and friction modulation as effective strategies to regain stability during
traction loss. The proposed estimation and control framework was demonstrated on the
ANYmal quadrupedal robot [43], which successfully navigated and walked dynamically
over slippery terrain, showing the effectiveness of their approach.

In another work, Wisth et al. [44] introduced a novel factor graph-based approach

13

2.1. Proprioceptive State Estimation

for estimating the pose and velocity of a quadrupedal robot on slippery and deformable
terrain. The key innovation of the paper is the incorporation of a pre-integrated velocity
factor, which fuses leg odometry with additional velocity inputs and accounts for related
biases. The authors recognized that uncertainties at the contact points, such as slip,
deforming terrain, and leg flexibility, are challenging to model, leading to potential
drift in leg odometry. To mitigate this drift, they extended the robot’s state vector
by adding a bias term for the pre-integrated velocity factor, which can be effectively
estimated through the integration of stereo vision and IMU data. The system was
validated through experiments involving dynamic movements of the ANYmal robot
across loose rocks, slopes, and muddy ground. Results showed a reduction in Relative
Pose Error (RPE) compared to previous works and an improvement over state-of-the-art
proprioceptive state estimators.

The paper of Fourmy et al. [45] introduced a state estimation approach for legged
robots, focusing on the integration of contact force measurements into a factor graph
framework. The goal is to improve the accuracy of estimating both the base state (posi-
tion, orientation, and velocity) and the centroidal state (center of mass position, velocity,
and angular momentum) by combining data from multiple sensors, such as IMU, joint
encoders, and contact force sensors. The primary innovation in this work is the exten-
sion of IMU preintegration techniques, widely used in visual-inertial odometry, to the
preintegration of contact force measurements. This allows the estimator to efficiently
incorporate high-frequency contact force data into the factor graph, reducing computa-
tional load by avoiding the need to process the raw data repeatedly during optimization.
By fusing contact force information with the base state estimates, the approach makes
the centroidal state observable, which helps mitigate biases caused by inaccuracies in
the robot’s kinematic and dynamic models.

A study done in (Fahmi et al. [46]) investigated the impact of soft terrain on proprio-
ceptive state estimation. Soft terrains complicate state estimation due to the variability
in physical terrain properties. Most state estimation methods are designed for rigid con-
tacts, neglecting the effects of soft terrain. The authors explored how and why soft
terrain impacts state estimation, utilizing a state estimator that combines IMU data
with leg odometry, originally developed for rigid contact conditions. The HyQ robot was
used in experiments, trotting on both soft and rigid terrains. The results demonstrated
that soft terrain negatively affects state estimation, causing a significant drift in state
estimates compared to rigid terrain, highlighting the need for approaches that account
for soft ground properties in legged robots.

Kim et al. [47] introduced a state estimation algorithm for legged robots, framing

14

2.1. Proprioceptive State Estimation

the problem as a MAP estimation task and solving it using the Gauss-Newton algorithm.
To maintain a fixed problem size, the Schur Complement method was employed for
marginalization. The algorithm uses the SO(3) manifold structure to derive the cost
function and Jacobians, and the state is reparameterized with a nominal state and
variation to ensure the correct application of linear algebra and vector calculus. A slip
rejection technique is also included to mitigate errors caused by faulty kinematic models.
The proposed algorithm was tested against the InEKF in various real-world environments,
demonstrating its effectiveness.

A recent work of Yang et al. [48] has also explored the use of neural networks in
state estimation, highlighting their potential to enhance the accuracy of sensor fusion
by learning optimal weight functions and improving estimation in challenging environ-
ments. The paper focused on state estimation for hydraulic quadruped robots by fusing
IMU measurements with leg odometry, applying the InEKF. Furthermore, neural net-
works were employed to train weight functions for foot force and leg odometry states,
which enhanced observation accuracy compared to conventional weighted average meth-
ods. Experimental results showed that the proposed method reduced the Root Mean
Square Error (RMSE) and decreased Absolute Trajectory Error (ATE) compared to the
traditional InEKF, achieving a drift of less than 4 cm per meter traveled.

More recently, Santana et al. [49], introduced a novel InEKF designed specifically for
legged robots, which relies solely on proprioceptive sensors. The proposed methodology
integrates recent advancements in state estimation theory with robust cost functions
applied during the measurement update process. Experimental results on quadrupedal
robots, using both real-world tests and public datasets, showed that this approach re-
duced pose drift by up to 40% over trajectories exceeding 450 m, compared to a state-
of-the-art InEKF.

Additionally, Yoon et al. [50] implemented for the first time an invariant smoothing
(IS) framework to fuse proprioceptive data for achieving accurate state estimation in
legged robots. This paper builds on the previous work by Hartley et al. [36], on contact-
aided InEKF. Hartley’s approach focused on fusing inertial measurements and leg kine-
matics while taking into account contact information to enhance the accuracy of state
estimation. Yoon et al. [50] extended that concept by proposing an invariant smoother
that is built on a MAP formulation of the state estimation problem. This further im-
proves estimation performance, especially under dynamic contact events, by leveraging
the group-affine property of residual functions, which results in state-independent Jaco-
bians and better convergence properties during optimization. Unlike previous methods,
the formulation with state-independent Jacobians led to enhanced convergence, espe-

15

2.2. Exteroceptive State Estimation

cially in dynamic contact scenarios. Additionally, the slip rejection method introduced
by Kim et al. [47] and a contact loop model were employed, improving accuracy by
re-evaluating foot velocity during dynamic events.

2.2 Exteroceptive State Estimation

Exteroceptive sensors (Fig. 2.3), primarily used for accurate and low-drift pose estima-
tion, have significantly advanced navigation and pose estimation techniques, and they
have greatly aided visual odometry, LiDAR odometry, visual Simultaneous Localization
And Mapping (SLAM), and LiDAR SLAM.

(a) An example of camera sen-
sor: the depth camera D435
from Intel RealSense [51].

(b) An example of LiDAR sensor:
the VLP-16 Mid-range LiDAR sen-
sor from Ouster [52].

Figure 2.3: Examples of exteroceptive sensors. Left: Realsense Depth camera D435. Right:
VLP-16 Mid-range LiDAR sensor.

Odometry is crucial for robot navigation, particularly in situations where global po-
sitioning methods are unavailable. The main goal of odometry is to predict the robot’s
motion. Various sensors, such as wheel and leg encoders, cameras, radar, and LiDAR,
are used for odometry in robotics (Lee et al. [53]). On the other hand, SLAM is a
method used by autonomous systems, such as robots or drones, to build a map of an
unknown environment while simultaneously tracking their own location within that map.
SLAM systems use sensors, such as cameras, LiDARs, or IMUs, to gather data about
the surroundings and their movement. This information is then processed online to gen-
erate a map and estimate the robot’s pose, allowing it to navigate and understand its
environment without a pre-existing map (Al-Tawil et al. [54]).

The main difference between SLAM and pure odometry lies in the scope of their
functionality. Odometry is focused on tracking the relative motion of a robot or vehicle,
usually by measuring wheel rotations (wheel odometry), leg kinematics (leg odometry),
or by using visual or LiDAR data (visual odometry and LiDAR odometry, respectively).
It calculates the position incrementally based on previous data, but it does not account

16

2.2. Exteroceptive State Estimation

for global consistency and errors that accumulate over time, which can lead to drift.
SLAM, on the other hand, not only tracks motion but also constructs a global map. A
key feature of SLAM is loop closure, where the system can recognize when it returns
to a previously visited location, allowing it to correct drift and improve the accuracy of
both the map and the estimated position (Tourani et al. [55]).

Loop closure is a powerful mechanism in SLAM that minimizes long-term drift by de-
tecting previously visited places and adjusting the map or trajectory accordingly. Modern
SLAM frameworks often employ real-time loop closure, allowing the map to be refined
without causing abrupt motion changes in the robot’s local frame. For example, if a
system distinguishes between a local “odom” frame and a global “map” frame (as is
common in Robot Operating System (ROS) TF [56]), loop closure can alter the map
while keeping the robot’s locally tracked pose smooth and continuous. However, despite
these design considerations, there are still scenarios in which loop closure can pose chal-
lenges. In feature-poor environments (e.g., empty rooms) or in locations where loops
are not detected for long periods (e.g., prolonged corridors), substantial drift may ac-
cumulate before a loop closure event occurs. Although the final result of loop closure
generally improves overall accuracy, the system’s performance can degrade temporarily
until a loop is detected and incorporated. Moreover, in highly ambiguous settings (e.g.,
places with very similar features), there is a risk of incorrect loop closures, which can
lead to larger corrections in the global map and, consequently, more noticeable shifts if
the local and global frames are not well managed.

In summary, while loop closure remains essential for reducing drift in SLAM, its
effectiveness in real-time applications depends on careful system design. By properly
managing local and global reference frames, modern SLAM systems can integrate loop
closures smoothly, ensuring minimal disruption to the robot’s real-time control and feed-
back loops.

In the next sections, we describe the most relevant work on Visual and LiDAR odom-
etry, as well as SLAM algorithms, with a focus on the most recent developments and
those already applied to legged robots.

2.2.1 Visual Odometry and SLAM

The term “Visual Odometry” was first introduced by Nister et al. [57] for its similarity to
the concept of wheel odometry. In this pioneering paper, the authors presented a system
designed to estimate the motion of either a stereo head or a single-moving camera
using video input. The system generates motion estimates for navigation in real-time

17

2.2. Exteroceptive State Estimation

with minimal delay. The process begins with a feature tracker, where point features
are matched between consecutive frames and linked into image trajectories at video
speed. From these feature tracks, robust camera motion estimates are derived using a
geometric hypothesize-and-test framework. This method produced what is referred to
as visual odometry-motion estimates based solely on visual input, without requiring any
prior knowledge of the scene or the camera’s movement. For a complete overview of
Visual Odometry methods, we suggest the interested reader to refer to (Scaramuzza and
Fraundorfer [58], Fraundorfer and Scaramuzza [59], Cadena et al. [60]).

One early work on vision in SLAM is from Sola et al. [61]. This paper introduced Bi-
CamSLAM, an approach that combines the strengths of both monocular vision and stereo
vision in SLAM. The method leverages monocular SLAM techniques on a stereo-vision
rig, allowing the system to achieve more flexible and robust mapping and localization.
The idea is to benefit from the immediate 3D information provided by stereo vision for
nearby objects while maintaining the long-range angular accuracy offered by monocular
methods for distant landmarks. One of the main advantages of this approach is the
ability to rapidly map objects that are close to the robot using stereo vision, which is
particularly important for reactive navigation. At the same time, distant landmarks,
which may fall outside the effective range of stereo vision, can still be used as long-term
angular references through monocular techniques. This combination helps improve the
consistency and accuracy of the SLAM process, particularly by reducing angular drift.

Later, Huang et al. [62] presented a system designed for visual odometry and mapping
using an Red Green Blue-Depth (RGB-D) camera, specifically applied to autonomous
flight. RGB-D cameras offer both color images and per-pixel depth information, making
them highly valuable for mobile robotics due to their rich data output and the availability
of affordable sensors. The system integrated advancements in algorithms and hardware
to enable real-time 3D navigation in cluttered environments, relying solely on onboard
sensor data. This independence from external communication links enhanced reliability,
particularly in challenging conditions where wireless connections may be unstable. The
described system was implemented for a quadrotor micro air vehicle, demonstrating its
ability to stabilize and control the vehicle autonomously. It was also used to construct
detailed 3D maps of indoor environments. The paper further evaluated the system’s
performance in stabilizing flight and mapping tasks and discussed limitations, such as
sensor noise or challenges in dynamic or low-texture environments.

Among the most notable work on visual odometry, Mur-Artal et al. [63] introduced
Oriented FAST and Rotated BRIEF (ORB)-SLAM. ORB-SLAM is a real-time, feature-
based monocular SLAM system that performs effectively in various environments, both

18

2.2. Exteroceptive State Estimation

large and small, indoors and outdoors. ORB-SLAM is robust to motion clutter and sup-
ports wide-baseline loop closure and relocalization. It includes automatic initialization,
which simplifies system deployment. The system is designed to use the same ORB fea-
tures for all essential SLAM tasks: tracking, mapping, relocalization, and loop closure.
A key strength of ORB-SLAM is its “survival of the fittest” strategy, which carefully
selects points and keyframes for the map reconstruction process. This approach en-
sures robustness and keeps the map compact, allowing it to grow only when the scene
changes, supporting long-term use. The paper provided a comprehensive evaluation of
ORB-SLAM across 27 sequences from well-known datasets, where it outperformed other
state-of-the-art monocular SLAM systems.

ORB-SLAM has been expanded to ORB-SLAM2 (Mur-Artal and Tardós [64]) and
ORB-SLAM3 (Campos et al. [65]). ORB-SLAM2 builds upon the foundation of the
original ORB-SLAM by introducing support for monocular, stereo, and RGB-D cameras.
It provides robust real-time performance in various environments, from small indoor
sequences to large-scale outdoor scenarios. Key features of ORB-SLAM2 include map
reuse, loop closure, and relocalization, enabling it to handle long-term operations and
large-scale mapping. The back-end of ORB-SLAM2 incorporates bundle adjustment for
accurate trajectory estimation with metric scale, and it includes a lightweight localization
mode that uses visual odometry in unmapped regions while matching points from existing
maps to reduce drift. Its ability to run on a standard Central Processing Unit (CPU)
and its accuracy made it a state-of-the-art SLAM system at the time of its release.

ORB-SLAM3 was a direct evolution of ORB-SLAM2. It further advances the system
by introducing several enhancements. ORB-SLAM3 is the first SLAM system capable
of performing visual, visual-inertial, and multi-map SLAM across monocular, stereo,
and RGB-D cameras, with support for both pinhole and fisheye lens models. One of
the major innovations in ORB-SLAM3 was its tightly integrated visual-inertial SLAM,
which relies entirely on MAP estimation, even during IMU initialization. This resulted in
real-time robust operation with higher accuracy, making it 2 to 10 times more accurate
than previous approaches. Additionally, ORB-SLAM3 introduced a multi-map system,
which allows to create and merge multiple maps seamlessly, improving the performance
in environments with poor visual information. Unlike visual odometry systems, ORB-
SLAM3 can reuse information from previous keyframes, even if they are separated by
long periods or different mapping sessions, significantly boosting accuracy.

Another relevant work on visual odometry is from Forster et al. [66] introduced a
semi-direct monocular visual odometry algorithm that is highly precise, robust, and faster
than other state-of-the-art methods. By adopting a semi-direct approach, their algorithm

19

2.2. Exteroceptive State Estimation

avoids the need for computationally expensive feature extraction and robust matching
techniques typically used in motion estimation. Instead, it operates directly on pixel
intensities, delivering subpixel precision at high frame rates. For mapping, they employ
a probabilistic method that explicitly models outlier measurements, leading to fewer
outliers and more reliable 3D point estimates. The algorithm’s ability to estimate motion
with high precision and at high frame rates enhanced its robustness in environments with
limited, repetitive, or high-frequency texture. It has been successfully applied to micro-
aerial vehicle state estimation in Global Positioning System (GPS)-denied environments.
Running at 55 frames per second on an onboard embedded computer and more than
300 frames per second on a consumer laptop, they call this approach Semi-direct Visual
Odometry (SVO).

Most visual SLAM systems struggle in dynamic environments, often relying on deep-
learning-based methods to detect and filter moving objects. However, these approaches
fail to handle unknown moving objects. To deal with this problem, Abati et al. [67]
introduced Panoptic-SLAM, an open-source visual SLAM system designed for robustness
in dynamic scenarios, even with unknown objects. It leverages panoptic segmentation
to filter dynamic elements during state estimation. Built upon ORB-SLAM3, Panoptic-
SLAM was tested on real-world datasets and compared against state-of-the-art systems.
Results showed that Panoptic-SLAM is, on average, four times more accurate than PVO
(Ye et al. [68]), the latest panoptic-based visual SLAM approach.

Despite the enormous progress in this field, challenges remain in developing large-
scale, long-term visual odometry and SLAM systems, such as for autonomous driving
over hundreds of miles. Currently, systems that use LiDAR sensors excel in such scenarios
due to their high accuracy, robustness, and reliability. For visual odometry to replace
these systems, technical improvements in robustness and long-term stability are needed.

2.2.2 LiDAR Odometry and SLAM

LiDAR (Fig. 2.3b), an acronym for Light Detection And Ranging, is a powerful remote
sensing technology employed for measuring distances and constructing highly detailed
3D representations of objects and environments. The sensing process commences with
a LiDAR system emitting laser pulses toward a designated area. When these pulses
encounter obstacles, a portion of the light reflects back to the LiDAR sensor. Measuring
the time each laser pulse takes to return and leveraging the constant speed of light,
LiDAR calculates the distance to the target.

LiDAR-only odometry determines a robot’s position by analyzing consecutive LiDAR

20

2.2. Exteroceptive State Estimation

scans. In this thesis, LiDAR odometry is classified into two main categories: (1) direct
matching, and (2) feature-based matching. The main difference between these two
approaches lies in the method used to match points between consecutive scans. Direct
matching methods directly calculate the transformation between two consecutive LiDAR
scans, while feature-based methods extract feature points in the LiDAR point cloud and
use them to estimate the transformation.

2.2.2.1 Direct matching

The direct matching method directly calculates the transformation between two con-
secutive LiDAR scans, representing the most straightforward approach in LiDAR-only
odometry. The Iterative Closest Point (ICP) algorithm (Zhang [69]) is a commonly used
technique for estimating this transformation iteratively by minimizing an error matrix,
typically the sum of squared distances between the matched point pairs. Robot odome-
try is derived by calculating the transformation between each pair of consecutive scans
using the ICP algorithm. However, ICP has drawbacks, including susceptibility to local
minima, which necessitates a reliable initial guess. The algorithm is also sensitive to
noise, such as dynamic objects. Additionally, its iterative nature can result in computa-
tional expense, sometimes causing prohibitively slow computation speed. Consequently,
substantial efforts have been dedicated to enhancing the performance of the ICP algo-
rithm for improved odometry. For instance, Segal et al. [70] proposed Generalized-ICP, a
probabilistic framework that combines both the ICP and point-to-plane ICP algorithms.
Unlike the traditional point-to-plane method, which models planar surface structures
using only the ’model’ (target) scan, the Generalized-ICP approach models planar struc-
tures from both (source and target) scans. This effectively transforms the method into
a “plane-to-plane” approach, because instead of matching points to planes in just one
scan, it aligns planes from both scans. One of the key advantages of this approach
is its robustness to incorrect correspondences, which simplifies the tuning of the maxi-
mum match distance parameter, a common challenge in ICP variants. Additionally, the
Generalized-ICP supports more expressive probabilistic models, allowing for the incorpo-
ration of terms to handle outliers and measurement noise, for instance.

However, modern LiDAR sensors produce dense point clouds that can overwhelm
traditional odometry algorithms, particularly on computationally limited platforms. To
address this, Chen et al. [71] introduced Direct LiDAR Odometry (DLO), a lightweight
method that provides consistent and accurate localization while being efficient enough
for real-time operation on limited hardware. DLO achieves this efficiency through several
key innovations. First, it uses dense, minimally preprocessed point clouds, allowing for

21

2.2. Exteroceptive State Estimation

(a) KISS-ICP. Image taken from [72]. (b) LeGO-LOAM. Image taken from [73].

Figure 2.4: Examples of a a direct matching and of a feature-based matching LiDAR odometry
algorithm: KISS-ICP (left), and LeGO-LOAM (right) in action.

detailed pose estimation without sacrificing speed. It also implements a novel keyframing
system, which effectively manages historical map data, reducing computational load
over time. Additionally, DLO incorporates a custom ICP solver designed to accelerate
point cloud registration by recycling data structures, further enhancing computational
efficiency. The DLO system has been extensively tested in complex environments on
both aerial and legged robots, as part of NASA JPL’s Team CoSTAR efforts in the
DARPA Subterranean Challenge.

More recently, Vizzo et al. [9], presented Keep It Small and Simple (KISS)-ICP
(Fig. 2.4a), a simple and robust LiDAR-based odometry system that prioritizes core
functionality and efficiency over complexity. Unlike many sensor-based odometry
systems that increase complexity to improve ego-motion estimation, this approach
focuses on removing non-essential components and refining the fundamental elements,
resulting in a streamlined system capable of operating effectively under a variety of
environmental conditions and with different LiDAR sensors. The proposed method
utilizes point-to-point ICP combined with adaptive thresholding for correspondence
matching, along with a robust kernel and a simple motion compensation strategy.
Additionally, it incorporates point cloud subsampling to improve efficiency. Remarkably,
this system requires only a few parameters, which typically do not need sensor-specific
tuning, making it adaptable across different platforms. It has been successfully tested
in diverse applications using the same parameter configuration, including automotive
platforms, Unmanned Aerial Vehicles (UAVs), Segways, and handheld LiDARs. The
system does not rely on IMU data and operates solely on 3D point clouds, making it
highly versatile for various operational conditions.

More recently, Ferrari et al. [74] presented MAD-ICP, an algorithm that builds upon
the well-established ICP framework. It utilizes a Principal Component Analysis (PCA)-
based k-dimensional (k-d)-tree implementation to extract structural information from

22

2.2. Exteroceptive State Estimation

the point clouds and calculate the minimization metric for alignment. To manage drift,
the system adjusts the local map based on the estimated uncertainty of the tracked pose,
ensuring stable performance over time.

2.2.2.2 Feature-based matching

Feature-based approaches in LiDAR-only odometry extract feature points in the LiDAR
point cloud and match them to estimate the transformation. Utilizing only feature
points instead of the entire point cloud can improve computational speed and overall
performance by eliminating outliers such as noise. The main challenge with feature-
based methods lies in the selection of “good” feature points that enhance point cloud
registration performance.

Zhang et al. [75] presented Lidar Odometry and Mapping (LOAM) a real-time ap-
proach for odometry and mapping using range data from a 2-axis LiDAR operating in
6 Degrees of Freedom (DOFs). The range measurements are received at different times,
and inaccuracies in motion estimation can lead to misalignments in the resulting point
cloud. Traditionally, coherent 3D maps are generated using offline batch methods, often
relying on loop closure to correct drift over time. Their approach offers low drift and
computational efficiency without requiring highly precise range or inertial measurements.
The key to this performance lies in dividing the complex SLAM problem, which typically
optimizes many variables at once, into two distinct algorithms. One algorithm runs at a
high frequency with lower accuracy to estimate the LiDAR’s velocity (odometry), while
the second algorithm runs at a lower frequency but with greater precision for point cloud
matching and registration. This combination enables real-time mapping.

A development of this work is LeGO-LOAM (Shan and Englot [73]). LeGO-LOAM
(Fig. 2.4b) is a lightweight and ground-optimized LiDAR odometry and mapping method
designed for real-time 6 DOFs pose estimation in ground vehicles. LeGO-LOAM is con-
sidered lightweight because it enables real-time pose estimation on low-power embedded
systems. It is also ground-optimized, as it takes advantage of the ground plane dur-
ing both segmentation and optimization steps. The process begins with point cloud
segmentation to reduce noise, followed by feature extraction to identify distinctive pla-
nar and edge features. These features are then used in a two-step Levenberg-Marquardt
optimization process to solve for different components of the 6-DOFs transformation be-
tween consecutive scans. Results demonstrated that LeGO-LOAM achieves comparable
or improved accuracy while reducing computational overhead, compared to LOAM.

More recently, Guadagnino et al. [76] introduced a new method that utilizes the
intensity channel of 3D LiDAR scans for high-frequency odometry estimation. Unlike

23

2.3. Multi-Sensor State Estimation

traditional approaches that use full point clouds, their method extracts a sparse set of key
points from intensity images using feature extraction architectures originally developed
for Red Green Blue (RGB) images. They also proposed a self-supervised fine-tuning
process to improve feature extraction accuracy online without needing ground truth data.

The literature shows that visual and LiDAR systems have proven to be accurate
and robust in many situations. However, there are challenging scenarios where these
systems can fail when used independently. To address this, researchers have explored
combining cameras and LiDARs with other sensor modalities to improve performance.
The details of this integration and its impact on system performance are further discussed
in Section 2.3.

2.3 Multi-Sensor State Estimation

Visual-only and LiDAR-only odometry or SLAM algorithms can struggle to obtain pre-
cise measurements in challenging conditions. For instance, visual systems may fail in
featureless environments or when visual feedback is unreliable, such as in fog, dust,
or darkness. Similarly, LiDAR systems are vulnerable in areas with limited or repeti-
tive geometric features, such as tunnels or highways. Additionally, exteroceptive state
estimation methods are limited by the sensor’s frequency, leading to delays in obtain-
ing measurements. To mitigate these issues, they are often paired with proprioceptive
sensors that provide high-frequency data and ensure faster updates on the robot’s mea-
surements. While proprioceptive sensors alone cannot offer low-drift pose estimation (as
demonstrated by Bloesch et al. [31]), they can operate effectively in those environments
where exteroceptive sensors face challenges, such as in poor lighting, occlusions, or areas
lacking significant features.

For example, Bloesch et al. [77], presented a Visual Inertial Odometry (VIO) frame-
work that tightly integrates inertial and visual data from one or more cameras using
an Iterated Extended Kalman Filter (IEKF). Instead of relying on traditional feature ex-
traction, it employs image patches as landmark descriptors, incorporating a photometric
error into the filter update step. This allows tracking of non-corner features, such as
lines, and simplifies the data association process. The robot-centric filter formulation
reduces nonlinearity errors and provides undelayed landmark initialization, resulting in a
robust and compact solution, effective in low-texture scenes and motion blur.

A monocular Visual Inertial system (VINS) is a system composed of one camera
and a low-cost IMU, that provides six DOFs state estimation. VINS-Mono (Fig. 2.5a),
presented by Qin et al. [78], integrates IMU and visual data through tightly coupled

24

2.3. Multi-Sensor State Estimation

(a) VINS-Mono. Image taken from [78]. (b) FAST-LIO2. Image taken from [80].

Figure 2.5: Examples of VINS-Mono (left), a visual-inertial odometry system, and FAST-LIO
(right), a LiDAR-inertial odometry system in action.

nonlinear optimization for accurate VIO. It includes loop detection for relocalization and
4-DOFs pose graph optimization to ensure global consistency. The system can reuse
and merge maps, supports various applications requiring high-accuracy localization, and
has been tested on public datasets and real-world experiments.

Among LiDAR-based methods, Shan et al. [79], introduced a Smoothing and Map-
ping (SAM) technique, named LiDAR Inertial Odometry (LIO)-SAM, which is tightly-
coupled LiDAR-inertial odometry framework designed for accurate, real-time trajectory
estimation and map-building. LIO-SAM is based on a factor graph structure, allowing
integration of various measurements, including loop closures, for enhanced accuracy.
IMU preintegration provides initial motion estimates and deskews point clouds for Li-
DAR odometry optimization. To maintain real-time performance, the system uses a
local scan-matching approach, marginalizing old LiDAR scans and employing a sliding
window of keyframes.

FAST-LIO by Xu and Zhang [11] is a computationally efficient and robust LIO frame-
work that tightly fuses LiDAR feature points and IMU data using an IEKF. It handles fast
motion and cluttered environments by lowering the computational load with a Kalman
gain formula based on state dimension rather than measurement dimension. FAST-LIO2
(Xu et al. [80]) extends this by introducing two key improvements. First, it registers
raw LiDAR points directly to the map without feature extraction, increasing accuracy
and adaptability to different LiDAR types. Second, it incorporates an incremental k-d
data structure for efficient map updates and dynamic rebalancing, surpassing other data
structures such as octrees. These innovations make FAST-LIO2 faster, more robust,
and versatile, supporting real-time mapping at up to 100 Hz, and ensuring high accu-
racy across different platforms and environments, including solid-state LiDAR with small
fields of view. An example of an application in Fig. 2.5b.

More recently, Chen et al. [8] presented Direct LiDAR Inertial Odometry (DLIO), a

25

2.3. Multi-Sensor State Estimation

lightweight algorithm that corrects motion distortion through a coarse-to-fine trajectory
construction approach. DLIO was designed to address the problem of the negative
impact of motion distortions in LiDAR scans, caused by aggressive motions from
agile flights or rough terrain. DLIO uses time-parameterized analytical equations for
fast, parallelizable point-wise deskewing, which removes distortions caused by sensor
movement. By optimizing motion correction and scan registration, DLIO demonstrated
better computational efficiency compared to other state-of-the-art methods.

To achieve accurate localization, sometimes GNSS is used since it can provide abso-
lute measurements outdoors and mitigate long-term drift. Fusing GNSS data with other
sensors is challenging, particularly when a robot transitions between areas with and with-
out sky visibility. To address this, Beuchert et al. [81] proposed a robust method that
tightly integrates raw GNSS receiver data with inertial measurements and optionally
LiDAR observations for precise and smooth mobile robot localization. Their approach
employs a factor graph incorporating two types of GNSS factors. The first type uses
pseudorange measurements, enabling global localization on Earth. The second type uses
carrier phase measurements, providing highly accurate relative localization, which is par-
ticularly useful when other sensors encounter challenges. The approach was validated
on a public urban driving dataset and with data from both a car and a quadruped robot
operating in environments with limited sky visibility, such as forests.

The recent Hilti SLAM Challenges (2021–2023) [82] have provided a competitive
forum where academic and industrial research teams showcased LiDAR-based SLAM so-
lutions in realistic, large-scale industrial environments. These competitions emphasize ro-
bustness to real-world factors such as cluttered workspace, dynamic objects (e.g. moving
workers or machinery), and challenging geometries. Among the top-performing teams:

• CSIRO: this teams has demonstrated highly accurate LiDAR-inertial odometry sys-
tems based on the work in (Ramezani et al. [83]), which demontrated robust per-
formance in handling large-scale indutrail sites. Their methods often incorporate
advanced loop closure strategies and precise motion compensation, contributing
to low-drift performance in unsturctured environments.

• KAIST (Urban Robotics Group): this group has produced LiDAR-inertial odometry
frameworks using AdaLIO (Lim et al. [84]) as a SLAM frontend and Quatro (Lim
et al. [85]) for loop closure detection, with pose graph optimization handled via a
factor graph. Their systems have demonstrated high accuracy and robustness in
large-scale industrial environments, with a focus on real-time operation and low
computational overhead.

26

2.3. Multi-Sensor State Estimation

By comparing algorithms on common datasets and standardized metrics, the Hilti
SLAM Challenges highlight tangible improvements in drift reduction, real-time perfor-
mance, and robustness to partial sensor occlusions, dynamic objects, and challenging
geometries. These advancements are crucial for deploying LiDAR-based SLAM systems
in real-world applications, particularly in industrial settings where safety, efficiency, and
reliability are paramount.

However, all of the previously mentioned algorithms are general and platform-
agnostic, making them applicable to various types of robots. However, for legged robots,
state estimation is also particularly challenging due to the instability of legged locomotion
and frequent shifts in terrain contact, which introduce issues such as vibration, abrupt
changes in motion, and inconsistencies in sensor readings. Incorporating leg kinemat-
ics can provide additional valuable information to complement visual, LiDAR, GNSS,
and inertial data, which can significantly enhance the accuracy of state estimation in
such dynamic environments. Methodologies specifically designed for legged robots are
discussed in the following section (Section 2.3.1).

2.3.1 Multi-Sensor State Estimation for Legged Robots

One of the most famous multi-sensor state estimators for legged robots is Pronto, (Ca-
murri et al. [6]). Pronto is a modular and flexible state estimation framework for legged
robots in challenging real-world environments, for instance, with low light, rough terrain,
and dynamic obstacles. The core of Pronto is an EKF that fuses IMU and leg odom-
etry data for pose and velocity estimation. It also integrates occasional low-frequency
pose corrections from visual and LiDAR odometry. Pronto runs high-frequency pro-
prioceptive estimation (250–1000 Hz) for control loops, and its effectiveness has been
demonstrated on multiple-legged platforms, including humanoid and quadruped robots
such as Atlas, (Boston Dynamics Inc. [86]) depicted in Fig. 2.6a, Valkirye (NASA [87]),
ANYmal (Fankhauser and Hutter [12]) and HyQ (Semini et al. [35]). The algorithms
are available as open-source ROS packages.

Lim et al. [3] presented WALK-VIO, a VIO system designed for quadruped robots,
incorporating walking-motion-adaptive leg kinematic constraints that adjust based on the
robot’s body motion. Robots often rely on VIO for fast localization, but challenges arise
in outdoor settings, where extraneous features from the sky or ground cause tracking
failures, and walking motions introduce wobbling, affecting the accuracy of both cameras
and IMU data. Existing approaches use leg kinematic constraints, but WALK-VIO goes
further by adapting these constraints dynamically based on other factors such as the

27

2.3. Multi-Sensor State Estimation

(a) Pronto has been used on the Boston Dy-
namics Atlas robot, by the MIT DRC team in
the DARPA Robotics Challenge [88].

(b) Vilens was tested on several Dataset.
This image shows the results obtained from
the LSM Dataset of the Urban Circuit of the
DARPA SubT Challenge [89].

Figure 2.6: Pronto and VILENS are two main examples of multi-sensor state estimators for
legged robots.

robot’s controller, gait, and speed. This ensures that the VIO remains effective regardless
of changes in walking motion.

However, it is important to highlight that both Pronto and WALK-VIO are developed
under a no-slip assumption, meaning they assume the robot maintains continuous ground
contact without slipping or falling. While this simplifies the state estimation process, it
neglects potential slippage or loss of contact, which can severely affect the accuracy and
reliability of the estimated state, particularly in challenging terrains where such conditions
are likely to occur.

To deal with slippage, Teng et al. [90] introduced a state estimator for legged robots
in slippery environments, utilizing an InEKF to fuse inertial, velocity, and leg kinematic
data with tracking camera inputs. It models camera-robot misalignment, enabling auto-
calibration of the camera pose. Velocity from leg kinematics is treated as a right-invariant
observation, and observability analysis confirms the system’s consistency, except for
rotation around the gravity vector and absolute position in some singular cases. The
method is tested on the Cassie bipedal robot (Agility Robotics [37]), walking over slippery
terrain, with online noise tuning for variable camera noise.

In another study, named Periodic-SLAM (Kumar et al. [91]), the authors address the
challenges of state estimation using visual information on legged robots, particularly due
to rapid changes in the camera’s viewing angle. They demonstrate that leveraging the
structured and periodic nature of legged locomotion can improve the accuracy of visual-
inertial SLAM in these difficult scenarios. Their method capitalizes on the predictability
of the robot’s gait cycle to enhance the feature tracking module. By performing multi-
session SLAM, their approach reduces absolute trajectory error and outperforms state-of-
the-art SLAM methods in both simulated environments and real-world tests on dynamic

28

2.3. Multi-Sensor State Estimation

quadrupedal gaits.
Another work by Kim et al. [4] proposed a state estimator for legged robots, called

STEP, which introduces a pre-integrated foot velocity factor that does not depend on
the traditional non-slip assumption. Instead, STEP makes the end-effector velocity
observable by leveraging body velocity data from a stereo camera, enabling accurate
estimation of the end-effector’s pose. Furthermore, STEP eliminates the need for contact
detection, a common requirement in other approaches. The method is validated through
extensive simulations and real-world experiments in challenging environments, such as
uneven and slippery terrains, showcasing robustness and adaptability.

Yang et al. [92] presented Cerberus, an open-source Visual Inertial Leg Odome-
try (VILO) system designed for real-time state estimation in legged robots. Cerberus
utilizes standard sensors, including stereo cameras, IMU, joint encoders, and contact
sensors, to estimate precise position across various terrains. A key feature is its online
kinematic parameter calibration and outlier rejection, which significantly reduce position
drift, achieving less than 1% drift during long-distance, high-speed locomotion.

However, it is important to note that these state estimators are highly reliant on
camera inputs, which can sometimes become unreliable. This dependence may affect
the overall accuracy and robustness of the estimated states, particularly in environments
where visual data quality is compromised, such as in poor lighting, occlusions, or rapid
motion changes.

For this reason, other state estimators such as VILENS, introduced by Wisth et al.
[2] (Fig. 2.6b), proposed to use also LiDAR in combination with proprioception and
camera data. Specifically, VILENS is an odometry system for legged robots that tightly
fuses data from four sensor modalities: vision, LiDAR, IMU, and leg odometry, using a
factor graph-based framework. A key feature is introducing a linear velocity bias term
to address leg odometry drift, which is estimated online due to the tight fusion of pre-
integrated velocity factors with the other sensor inputs. This approach makes the linear
velocity bias observable and corrects for degenerate conditions that would otherwise
impact state estimation when relying on individual sensors.

A recent paper by Ou et al. [93] presented a Kinematic Inertial Leg Odometry (KILO)
framework for legged robots, named Leg-KILO, addressing challenges from high-dynamic
motion, such as foot impacts causing IMU degradation and LiDAR distortion. Using
graph optimization, the framework tightly integrates leg odometry, LiDAR odometry,
and loop closure. It features a kinematic-inertial odometry method based on an error-
state Kalman filter to reduce height fluctuations and an adaptive scan slicing and splicing
technique for LiDAR data. Experiments in various environments show that Leg-KILO

29

2.4. Summary and Discussion

with loop-closure significantly reduces drift during high-dynamic motion compared to
state-of-the-art methods, and the dataset and code are open-sourced.

2.4 Summary and Discussion

In this chapter, we reviewed the latest advancements in state estimation for legged
robots, focusing on the use of proprioceptive and exteroceptive sensors. Key works in
each category were discussed, along with their associated challenges and limitations.
We identified the drawbacks of relying solely on either proprioceptive or exteroceptive
sensors, such as drift accumulation, and dependence on feature-rich environments. Ad-
ditionally, we highlighted the most recent developments in multi-sensor state estimation,
emphasizing the critical role of integrating diverse sensor modalities to enhance accuracy
and robustness in complex and unstructured environments. For legged robots, we showed
evidence in the literature that leg kinematics provide valuable additional information to
improve state estimation robustness and accuracy. However, these robots often operate
in challenging and unpredictable terrains, where environmental uncertainties, such as un-
even surfaces or slippery terrain, pose significant challenges to reliable state estimation.

A recent survey of the DARPA Subterranean Challenge [89] by Ebadi et al. [94] clears
up on the unique difficulties of deploying state estimation in extreme, GPS-denied, and
visually degraded environments. The survey highlights the critical need for robust sensor
fusion, robustness to perceptual failures, and the incorporation of non-visual information.
Teams participating in the challenge often encountered severe dust, darkness, and un-
even terrain, prompting the development of approaches that combined LiDAR, inertial,
thermal, and foot-contact data to mitigate slip events and compensate for drift. These
experiences underscore the importance of integrating proprioceptive and exteroceptive
sensing when navigating challenging domains, reaffirming that leg kinematics and con-
tact forces can significantly enhance the accuracy and robustness of state estimation in
slippery or uneven environments.

Over the past decades, there has also been significant progress across visual-inertial,
LiDAR-based, and leg-odometry approaches for legged robots. Modern LiDAR odom-
etry pipelines, for instance, can achieve drift rates as low as 1% over long distances
when paired with high-quality motion deskewing and calibration. Likewise, visual-inertial
odometry methods have substantially improved in robustness and computational effi-
ciency, thanks to better feature detection, Graphics processing unit (GPU)-accelerated
SLAM frameworks, and learned semantic cues. Nevertheless, real-world complexities
such as sensor occlusion, dynamic lighting, and unsturctured terrain continue to present

30

2.4. Summary and Discussion

major challenges. This reality underscore the ongoing need for research in multi-sensor
fusion, slip detection, and fault-tolerant algorithms that can ensure reliable performance
despite environmental uncertainties.

The primary goal of this dissertation is to develop state estimation frameworks ca-
pable of addressing some of these uncertainties and delivering accurate and robust state
estimation for legged robots. Specifically, our work focuses on the challenges posed
by slippery terrains, which frequently disrupt state estimation processes. In the next
chapter, we introduce a study dedicated to detecting slippage events. The subsequent
chapter builds upon this by presenting state estimation frameworks designed to handle
such events effectively, leveraging multi-sensor fusion to ensure accurate and reliable
performance in diverse and challenging environments.

31

Chapter 3

Slip Detection on Quadruped
Robots

3.1 Preface

This chapter addresses the problem of slip detection, a critical component in mitigating
the drift caused by uncertainties on slippery terrains during state estimation. We present
a slip detection algorithm that operates independently of gait type and does not rely
on position or velocity estimations in the inertial frame, which are prone to drift. The
method can detect multiple simultaneous foot slippages by leveraging measurements
expressed in a non-inertial frame. The approach was validated on the 90 kg HyQ robot,
developed by the Italian Institute of Technology (IIT), Genoa.

This work was primarily carried out during my Master’s Thesis internship at IIT while
I was a student at the University of Pisa and was later finalized during my Ph.D. studies
at IIT. Consequently, some of the images included in this chapter also appear in my
Master’s Thesis. This study serves as a foundational step for the research presented in
the following chapters and has been published in (Nisticò et al. [1]):

Ylenia Nisticò, Shamel Fahmi, Lucia Pallottino, Claudio Semini, and Geoff Fink,
“On Slip Detection for Quadruped Robots”, Sensors, vol. 22, no. 8, p. 2967,
April 2022, https://doi.org/10.3390/s22082967.

32

 https://doi.org/10.3390/s22082967

3.2. Introduction

This work was conceptualized and developed by me, supported by Shamel Fahmi,
and Geoff Fink, who also contributed to the methodology and investigation. I handled
the software development, validation, formal analysis, data curation, and visualization.
The initial draft was prepared by me, with all authors contributing to review and editing.
Supervision was provided by Lucia Pallottino, Claudio Semini, and Geoff Fink.

3.2 Introduction

Sensor-based slip detection methods, such as those proposed by Park et al. [95], Okatani
and Shimoyama [96], Massalim et al. [97], have limited applicability for real-world legged
robots because they require sensors attached to the foot tip, which are prone to damage
from repetitive impacts during locomotion. Additionally, touchdown events can introduce
force signal discontinuities, complicating detection. In contrast, kinematics-based detec-
tion strategies are more suitable for legged robots, where ground impacts are frequent.

Several prior works have explored slip detection and recovery. Takemura et al. [98]
proposed a dual strategy: adjusting gait parameters as a long-term measure and adding
forces to keep the Ground Reaction Force (GRF) within the friction cone as a short-term
solution, assuming accurate normal force estimation.

For the bipedal robot HRP–2 [99], Kaneko et al. [100] developed a slip observer
to detect skids on slippery floors, enabling balance control by adjusting footholds to
compensate for torso rotation.

Jenelten et al. [42] developed a probabilistic contact and slip estimation approach
using a Hidden Markov Model for ANYmal, tested on frozen ground. Their slip recovery
strategy involved impedance control and friction modulation, demonstrating effective
stabilization in field tests.

Focchi et al. [101] introduced a slip detection and friction parameter estimation
methodology using proprioceptive sensors, coupled with a recovery strategy leveraging
a whole-body controller optimized for Ground Reaction Forces (GRFs). This method,
implemented for HyQ locomotion, is further detailed in Section 3.8 as it serves as a
baseline for the algorithm presented in this chapter.

3.3 Contribution

Previous works on slip detection have various limitations that impact their robustness
and adaptability. For instance, Takemura et al. [98] relied on specific sensors, such as
accelerometers attached to the leg, to detect slip. These sensors are prone to deterio-

33

3.3. Contribution

ration due to the continuous ground contact experienced by legged robots, which can
degrade performance over time.

The work by Jenelten et al. [42] assumes that the ground conditions, such as friction
coefficients, remain relatively stable during locomotion. If the surface properties change
rapidly or are highly variable (e.g., mixed patches of ice and gravel), the model may
struggle to adapt quickly, resulting in delayed or incorrect slip detection.

In the work by Focchi et al. [101], slip detection relies on estimating the robot’s states
in an inertial (world) frame under the assumption that the foot velocity remains constant
in this frame. Although this approach can effectively identify slip when state estimates are
accurate, even minor errors in state estimation can trigger false positives. Furthermore,
because the method integrates IMU-measured accelerations, it is susceptible to drift and
divergence over time, which can undermine the overall reliability of slip detection.

The approach presented in Kaneko et al. [100] introduces a slip detection observer
that estimates slip based on foot-ground contact forces and kinematic data. However,
this method has limitations as it assumes consistent contact forces and may not perform
well when there is dynamic variability in the contact interactions or when the robot’s
gait is highly dynamic. Moreover, the method can struggle on complex terrains with
mixed friction conditions, and its performance is influenced by the accuracy of the force
sensors, which are susceptible to noise and calibration issues.

While it is true that slip physically occurs in the world frame (i.e., the foot moves
relative to the ground), our approach reduces reliance on potentially drift-prone inertial
estimates by tracking foot velocity and position in the robot’s base frame. When a
foot is commanded to be stationary relative to the ground, we expect minimal relative
motion between that foot and the base; any unexpected motion measured in the base
frame can then be interpreted as slip, even without directly referencing the world frame.
This kinematic-based algorithm is independent of gait type, enabling slip detection for
one or more legs simultaneously. Such flexibility allows our method to handle both trot
gait (two legs swinging simultaneously) and crawling gait (one leg swinging at a time).
We validated our approach on the 90 kg hydraulically actuated quadruped robot HyQ
and compared it against the slip detection algorithm by Focchi et al. [101]. Our results
demonstrate improved robustness and adaptability across varying terrain conditions and
gait patterns, illustrating that reliable slip detection can be achieved by focusing on local
(base-frame) measurements rather than complete inertial-frame estimates.

34

3.4. Outline

(a) The HyQ robot.

X

Z

X

Z

(b) Location of the base frame
B (blue), and the world frame
W (red).

x

y

LFLH

RFRH

(c) LF, RF, LH, and RH are
the left front, right front, left
hind, and right hind legs, re-
spectively.

Figure 3.1: The HyQ robot and the reference frames used in this work.

3.4 Outline

The rest of this chapter is organized as follows: Section 3.5 presents the robot model
and the sensors used for slip detection. Section 3.7 gives an overview of the baseline
approach used for comparison, Section 3.8 details the slip detection algorithm, which is
validated on the HyQ robot in Section 3.9. Finally, Section 3.10 provides a discussion,
and Section 3.11 concludes the chapter.

3.5 Modelling and Sensing

HyQ (Semini et al. [35]), shown in Fig. 3.1a, is a 90 kg hydraulically actuated quadruped
robot developed by IIT. It features a torso and four identical legs arranged in a for-
ward/backward configuration, with knees pointing inward. The robot has 12 torque-
controlled joints powered by hydraulic actuators, providing 12 DOFs. The base frame B
is located at the geometric center of the trunk, while the world-inertial frameW initially
aligned with the base frame, considering an offset along the z-axis by the robot’s height,
as depicted in Figs. 3.1b and 3.1c. We refer to the legs as Left Front (LF), Right Front
(RF), Left Hind (LH), and Right Hind (RH).

HyQ is equipped with a six-axis KVH 1750 IMU (KVH Industries [102]) on the trunk,
which provides linear acceleration a ∈ R3 and angular velocity ω ∈ R3. Each joint has an
encoder and torque sensor, allowing measurements of joint positions q ∈ R12, velocities
q̇ ∈ R12, and torques τ ∈ R12. Measurement noise and bias are assumed to vary slowly
over time, with zero mean and a Gaussian distribution. This work uses only the data
from the mentioned proprioceptive sensors.

35

3.6. Contact Estimation

3.6 Contact Estimation

To determine the contact states α ∈ R4 (i.e., whether a foot is in contact with the
ground), GRFs are first estimated as described in (Fahmi et al. [46]), assuming that all
external forces are applied to the feet during the stance phase. The contact state αi for
each leg i is a boolean variable, set to 1 when the GRFs exceed a predefined threshold,
and 0 otherwise. Specifically, the contact state αi is defined as:

αi =


1 if Fgrf,i > Fmin

0 otherwise
(3.1)

where Fmin is the threshold value, and Fgrf,i ∈ R3 is the GRF of the leg i, computed
using the dynamics equation of motion:

M(x̄)¨̄x + h(x̄, ˙̄x) = τ̄ + J⊤Fgrf (3.2)

where x̄ = [x⊤η⊤q⊤]⊤ ∈ R18 is the generalized robot state, given by the position and
attitude of the base in the world frame, and the joint angles. Then ˙̄x ∈ R18 and ¨̄x ∈ R18

are the corresponding generalized velocities and accelerations, M ∈ R18×18 is the joint-
space inertia matrix, h ∈ R18 is the vector of Coriolis, centrifugal, and gravity forces,
τ̄ = [0 τ] ∈ R18 where τ ∈ R12 is the vector of joint torques, and finally Fgrf ∈ R12 is
the vector of GRFs, while J ∈ R18×12 is the floating base Jacobian.

Then, we solve for the GRFs Fgrf of each leg using the actuated part of the dynamics:

Fgrf,i = −αi(J⊤
i (qi))

−1(τi − hi(x̄i, ˙̄xi)) (3.3)

3.7 Baseline Approach

In this section, we introduce a state-of-the-art algorithm by Focchi et al. [101], which
serves as the baseline for comparison. After discussing its limitations, we present our
proposed approach.

The baseline algorithm uses two kinematics-based strategies for slip detection at the
foot-velocity level. The first strategy detects slippage in a single leg (Section 3.7.1)
by estimating the stance foot velocities in the body frame (ẋb

f). The second strategy
detects slippage involving two or more legs by estimating the stance foot velocities in
the world frame (ẋw

f) (Section 3.7.2).

36

3.7. Baseline Approach

3.7.1 Single-Leg Slip Detection

The first strategy compares the stance foot velocities in the body frame (ẋb
f) to identify

outliers using statistical tools. At each iteration of the control loop, the median norm of
the stance foot velocities is computed. A leg is flagged as slipping if its velocity deviates
from the median of the velocity of stance-feet by more than a predefined threshold ϵ,
which is experimentally tuned. Each leg has an associated flag that is set to true when
a slip is detected.

3.7.2 Multiple-Leg Slip Detection

A more complex situation arises when two or more legs are slipping simultaneously,
making it difficult to identify which legs are slipping or only in the stance phase using
the median approach. To address this, the authors proposed a second strategy: checking
which foot velocities ẋf are kinematically consistent with the base velocity ẋb

b.
The intuitive idea is to verify that the Cartesian velocities of the stance feet ẋw

f are
zero in the inertial frame W . These velocities can be expressed as:

0 ≈ ẋw
f = ẋw

b + Rw
b (ẋb

f + ω × xb
f) (3.4)

where Rw
b ∈ SO(3) is the rotation matrix representing the base orientation (from B to

W). Here, xb
f ∈ R3, ẋb

f ∈ R3, are the foot position and velocity in the body frame B,
respectively, while ω is the angular velocity, measured by an on-board IMU sensor. The
base linear velocity ẋw

b ∈ R3 in the inertial frame is estimated via short-time integration
of the base linear acceleration measured by the IMU accelerometers.

3.7.3 Drawbacks of the Baseline Approach

Although the slip detection approaches previously described can exhibit certain limi-
tations, several successful legged robot estimators also rely on velocities expressed in
the world frame and IMU integration. These methods have demonstrated robust per-
formance in real-world scenarios when paired with carefully designed state estimation
frameworks and calibration procedures that mitigate drift and false positives. Nonethe-
less, potential challenges remain. For instance, the single-leg slip detection method may
not generalize from slow crawl gaits to faster gaits such as trotting, where legs exhibit
pairwise velocity differences which can reduce the accuracy of the single-leg approach.
Similarly, integrating IMU-measured accelerations in the world frame can be prone to

37

3.8. Proposed Slip Detection Algorithm

drift over longer periods, necessitating strategies for managing accumulated errors, such
as careful short-time integration.

3.8 Proposed Slip Detection Algorithm

The idea behind the proposed method is to overcome the aforementioned problems
by detecting slippage using foot velocities expressed in B. This approach, based
on ẋb

f = [ẋb
fx

ẋb
fy

ẋb
fz

]⊤ ∈ R3, is more robust as it directly relies on sensor measurements
(e.g., encoders) and avoids issues such as drift typically associated with estimating base
states in the world frame or using numerical integration of IMU data.

A slipping leg could be identified when the foot velocity deviates from the desired
velocity. The deviation is quantified by ∆V =

∣∣∣dẋb
f − ẋb

f

∣∣∣, which represents the norm of
the difference between the desired and actual foot velocities in the body frame B.

Slippage can be detected when ∆V exceeds a threshold ϵ during the stance phase.
However, calculating the norm alone is not a reliable tool for slip detection. The reason is
that the difference between the desired and actual velocity increases along the predomi-
nant direction of motion due to larger tracking errors. Additionally, if the robot’s velocity
changes during motion, ϵ must be adjusted accordingly. To ensure that the direction and
velocity of motion do not affect ∆V , we introduce a weight to scale each component
of the vector dẋb

f − ẋb
f . The weight is

∣∣∣dẋb
fi

∣∣∣, the norm of the desired foot velocity in B
for each component. This scaling minimizes the impact of larger tracking errors in any
specific direction and ensures that ∆V remains consistent during motion, even if the
desired body velocity changes. This effect is illustrated in Fig. 3.2. The top plot shows
how ∆V changes when the robot’s velocity is modified during a trotting task with a
variable feed rate (velocity increases along the x-direction in the interval [10− 20] sec-
onds). The bottom plot demonstrates that ∆V maintains a consistent trend throughout
the task.

To ensure numerical stability and avoid a zero denominator, we divide by
∣∣∣dẋb

fi

∣∣∣ and
add a margin m, which is experimentally tuned. When slippage occurs, the value of ∆V

increases. Therefore, an upper limit is imposed on ∆V , and any further increase beyond
this limit is classified as slippage. The final formulation for ∆V is given by:

∆V =

√√√√√ ∑
i=x,y,z

dẋb
fi

−ẋb
fi∣∣∣dẋb

fi

∣∣∣+m

)2

> ϵv (3.5)

where the threshold ϵv is a conditioned value that depends on the phase of foot motion.

38

3.8. Proposed Slip Detection Algorithm

0 5 10 15 20 25 30
0

0.2

0.4

0.2

0.4

0
[a

d
im

]

|

[m
/s

]
Δ

V
Δ

V

Time [s]

Figure 3.2: ∆V (top) and ∆V (bottom) in a simple trotting task with variable feed rate
(no slippage). The higher peaks in the top figure correspond to a higher linear velocity along
the x-axis.

During the swing phase, ϵv is set to ∞, as a swing leg cannot slip. During the stance
phase, ϵv is assigned a constant value for each leg. This value is carefully tuned to detect
the highest peaks of ∆V .

In the case of slippage, an important question arises: How far did we slip? A
quantitative measure of the slipping length can be derived from the foot position. During
slippage, the foot position deviates from the desired position, and this deviation can be
quantified as: ∆P =

∣∣∣||dxb
fi
|| − ||xb

fi
||

∣∣∣. Additionally, ∆P is particularly important
for another reason: at the beginning of foot-ground contact, there is a short time
interval where the difference between the desired and actual foot velocities increases
instantaneously, as shown by the dotted circles in Fig. 3.3. This may be caused by several
factors: (i) an actual but small (possibly insignificant) slippage, (ii) a delay in control,
or (iii) the current implementation of stance detection (Section 3.6), which introduces a
slight delay in recognizing contact with the ground. This initial foot slippage (typically
∼ 1 or 2 cm) is negligible compared to the robot’s size. To ensure it is not detected as
significant, we add a condition on ∆P to account for this negligible slippage:

∆P =
∣∣∣||dxb

fi
|| − ||xb

fi
||

∣∣∣ > ϵp (3.6)

If ∆P remains below the threshold ϵp, the slippage is considered negligible. The value
of ϵp is constant and determined experimentally. A slippage is detected when ∆V and
∆P exceed their respective thresholds. For each leg i, we introduce a flag βi ∈ 0, 1,
where βi = 1 indicates a slip detection, and βi = 0 otherwise.

The pseudo-code implementation of the proposed algorithm is in Algorithm 1.

39

3.9. Results

[m
/s

]
V

z

Time [s]

[m
/s

]
V

y
[m

/s
]

V
x

-

-

-

Figure 3.3: Desired (blue line) and actual (red line) foot velocity in a simulation task of
crawling (no slippage). Velocity v = [vx vy vz] is expressed wrt B. The shaded areas indicate
that the foot is in stance.

Algorithm 1 detectSlippage (ẋb
fi

,dẋb
fi

,xb
fi

,dxb
fi

)
1: ∆V ← scaled diff(ẋb

fi
,d ẋb

fi
); ▷ ẋb

fi
and dẋb

fi
are the actual and desired foot

velocity in B
2: ∆P ← diff(xb

fi
,d xb

fi
); ▷ xb

fi
and dxb

fi
are the actual and desired foot position in B

3: for each stance leg i do
4: βi ← (∆Vi > ϵv) & (∆Pi > ϵp); ▷ ϵv and ϵp are the thresholds for ∆V and ∆P

5: end

3.9 Results

In this section, we first present the results obtained in simulation with the HyQ robot
trotting on a patch of ice (Section 3.9.1), and compare the proposed method with the
baseline approach. Then we show experimental results obtained while crawling on a
slippery surface (Section 3.9.2). Also in this case we benchmark the proposed method
with the baseline approach.

3.9.1 Simulation Results: Trotting onto Patches of Ice

To demonstrate the versatility of the proposed method across different gaits, we tested
it in simulation with the robot trotting on terrain featuring four low-friction patches
(µ = 0.08), as shown in Fig. 3.4.

We used the following parameters: ϵv = percentile(∆V , 95%), ϵp = 0.03, and m =
0.3. For comparison, we implemented the baseline strategy described in Section 3.7.2 to

40

3.9. Results

detect multiple legs slipping simultaneously, setting the baseline threshold to ϵvBL
= 1.

Fig. 3.5 illustrates ∆V and ∆P when the robot trots over ice slabs, with shaded red
areas indicating actual slippage. Fig. 3.6 compares the slip detection flags obtained using
the baseline and proposed approaches. The results show that correctly identifying slipping
stance legs does not impact the detection status of other stance legs, as their flags
remain 0 due to ∆P staying below ϵp. Furthermore, the proposed method demonstrates
improved efficiency in detecting slippage for each foot throughout its entire duration.

Figure 3.4: Simulation of the HyQ robot traversing slippery terrain patches with a trot gait
(low friction patches illustrated in white). The image sequence starts from the top left to right
and continues at the bottom left. The red arrows indicate slipping feet.

ε

ε

Figure 3.5: Plots of ∆V and ∆P (blue) with respective thresholds (red line) illustrated for
the four legs (LF, RF, LH, RH) during a trot gait. The gray shaded area shows stance phases
and the red shaded area marks slippage.

41

3.9. Results

Figure 3.6: Comparison between the flags. The red one is obtained with the baseline approach,
the blue one with the proposed approach. The gray shaded area shows stance phases and the
red shaded area indicates the ground truth.

3.9.2 Experimental Results on the HyQ robot: Crawling on a
Slippery Surface

In this section, we present experimental results on HyQ. The first experiment involved
the robot walking on non-slippery terrain, while the second used a slippery patch created
by sprinkling soap on its surface. Both experiments were conducted using the crawl gait.

Data from these experiments were recorded and analyzed offline to tune the thresh-
olds. We established the ground truth by identifying atypical foot trajectory displace-
ments during the stance phase and confirming them with the corresponding time stamps
and video recordings. Then, we determined the minimum ϵp and ϵv values that avoided
detecting slippage in the first experiment while correctly identifying actual slips in the
second.

After the first experiment, we selected the following parameters: ϵp = 0.04, m =
0.3, and ϵv = percentile(∆V , 95%). During the test, the LH and RF legs slipped
simultaneously. For comparison, we implemented the baseline multiple leg slip detection
method, setting the threshold for the baseline approach to ϵvBL

= 1.
Although only the LF and RF legs were intended to slip during the experiment,

slippage also occurred for the RH leg, leaving the LH leg as the only non-slipping leg.
Fig. 3.8 shows ∆V and ∆P for all four legs during the slippery terrain experiment
depicted in Fig. 3.7. Fig. 3.9 compares the flags obtained using the two methods.

As shown in Fig. 3.8 and Fig. 3.9, all detections using the proposed method are
accurate. The results demonstrate that the proposed method outperforms the baseline
by correctly detecting actual slipping events, avoiding false positives, and accurately
indicating the duration of the slips. In contrast, the baseline approach produces false
positives, detecting slippage for the LH leg, which did not actually slip.

42

3.9. Results

Figure 3.7: Experiment of the HyQ robot stepping from left to right on slippery terrain
patches, using a crawl gait (low friction patches obtained by sprinkling a whiteboard with
soap). The image sequence starts from the top left to right and continues at the bottom left.
The red arrows indicate slipping feet.

ε

ε

Figure 3.8: Plots of ∆V and ∆P (blue) with respective thresholds (red line) illustrated for
the four legs (LF, RF, LH, RH) during a crawling gait. The gray shaded area shows stance
phases and the red shaded area marks slippage.

43

3.10. Discussion

Figure 3.9: Comparison between the flags. The red one is obtained with the baseline approach,
and the blue one with the proposed approach. The gray shaded area shows stance phases and
the red shaded area indicates the ground truth.

3.10 Discussion

The proposed slip detection method for quadruped robots leverages foot velocities ex-
pressed in the body frame, ensuring independence from the robot’s velocity and gait
type. This design eliminates challenges typically associated with methods relying on
the world frame, such as drift caused by inaccurate state estimation. The method was
validated both in simulation and on the HyQ robot, demonstrating its versatility and
effectiveness in detecting slippage across different gaits, including trotting and crawling.
The results highlight the method’s ability to outperform the baseline approach, offering
accurate slippage detection. This is particularly valuable for maintaining stability dur-
ing locomotion and discarding unreliable measurements in the estimation of the robot’s
state. The use of kinematics-based measurements, which rely directly on foot position
and velocity data, ensures robustness against uncertainties such as ground reaction force
(GRF) estimation errors often seen in force-based approaches. However, while the cur-
rent results are promising, further research is needed to refine the method’s adaptability
to diverse terrains and environmental conditions. Addressing these areas will enhance
the method’s reliability in real-world applications.

3.10.1 Limitations

Despite its advantages, the proposed method has certain limitations:

• Threshold Sensitivity: The thresholds ϵv and ϵp require careful tuning for each
specific robot and terrain. This tuning process can be labor-intensive and may
reduce the method’s generalizability.

44

3.11. Conclusion

• Measurement Dependency: The method’s performance is heavily reliant on the
accuracy of foot position and velocity measurements in the base frame, calculated
using forward kinematics. Errors or noise in these measurements, due to sensor
inaccuracies or external disturbances, can affect detection reliability.

Additionally, in our approach, a slipping leg is identified when its measured velocity
and position deviate significantly from the commanded (desired) velocity and position
in the body frame. This criterion is generally reliable under normal walking conditions,
where the foot is expected to move as commanded. However, we acknowledge it may fail
in some less common situations. For instance it can incorrectly classify a “trapped” foot
(e.g., wedged under a rock) as slipping if the commanded velocity is high but the foot
cannot actually move. In such edge cases, additional checks or complementary sensing
strategies (e.g., contact force monitoring) would be necessary to discriminate between a
legitimately slipping foot and one that is immovable.

3.11 Conclusion

In this chapter, we presented a kinematics-based slip detection approach for legged robots
that relies on velocity and position measurements at ground contacts. Unlike force-based
methods, which require six-axis force/torque sensors at the feet, this approach uses
kinematic data, making it simpler and more adaptable. By expressing foot velocities in
the body frame, the method avoids drift issues typically encountered when using the
world frame, ensuring reliable performance across various locomotion types and during
velocity transitions.

The method was validated through simulations and physical experiments on the
HyQ robot, demonstrating its ability to detect slippage quickly and effectively. Results
showed that the proposed method is more robust than the baseline approach, accurately
detecting slippage events without false positives, even in challenging scenarios. This
robustness makes it suitable for diverse terrains and gaits, including dynamic tasks where
the robot’s velocity changes frequently.

Future research will focus on expanding the applicability and reliability of the ap-
proach. Key areas include:

• Tolerable Slippage Analysis: Investigating the maximum slippage allowable
while preserving locomotion stability.

• Terrain Friction Estimation: Developing methods to estimate terrain friction

45

3.11. Conclusion

properties during locomotion, enabling the robot to adjust its gait and cautiousness
dynamically based on the situation.

• Recovery Strategies: Implementing strategies for recovering from slippage on
extreme terrains, such as icy surfaces or slopes with incorrectly estimated inclina-
tions.

• Integration with Vision: Incorporating visual data to estimate terrain friction
coefficients and roughness, providing additional information to enhance detection
accuracy.

These advancements will enable more resilient and adaptive locomotion, ensuring the
robot’s ability to operate effectively in complex and dynamic environments.

Finally, the proposed method has been used in the multi-sensor state estimator for
quadruped robots presented in Chapter 4. The slip detection algorithm is integrated
into the state estimator to improve the robustness of the state estimation in challenging
terrains.

46

Chapter 4

The Real-Time Multi-Sensor
State Estimator MUSE

4.1 Preface

This chapter introduces the Multi-Sensor State Estimator for quadruped robots MUSE,
a real-time system that integrates data from multiple (proprioceptive and exteroceptive)
sensors to deliver precise and dependable state estimates. Designed for on-board
implementation, MUSE is capable of estimating the robot’s pose, velocity, attitude,
and contact forces. The framework combines Kalman filters with nonlinear observers
to achieve robust performance. The effectiveness of MUSE is demonstrated through
validation on the Aliengo and ANYmal quadruped robots, where we demonstrated that
MUSE can consistently provide real-time state estimates with greater accuracy and
reliability than other state-of-the-art state estimation methods.

The first findings of this research have been presented in the following publication:

Ylenia Nisticò, João Carlos Virgolino Soares, Geoff Fink, and Claudio Semini,
“Multi-Sensor Fusion for Quadruped Robot State Estimation on Challenging Ter-
rain”, I-RIM 3D Conference 2024

This work was conceptualized and developed by me and Geoff Fink, who also con-
tributed to the software development. João Carlos Virgolino Soares assisted with the

47

4.2. Introduction

development, validation, and formal analysis. The initial draft was prepared by me, with
all authors contributing to review and editing. Supervision was provided by João Carlos
Virgolino Soares, Geoff Fink, and Claudio Semini.

The main findings of this research have been presented in the following publication:

Ylenia Nisticò, João Carlos Virgolino Soares, Lorenzo Amatucci, Geoff Fink,
and Claudio Semini, “MUSE: A Real-Time Multi-Sensor State Estimator for
Quadruped Robots”, Under Review at IEEE Robotics and Automation Letter.

This work shares the same contributions as the previous one, with the addition of
Lorenzo Amatucci, who participated in the experiment described in Section 4.7.2.1. The
dataset used in Section 4.7.2.2 was provided by Prof. Maurice Fallon and Prof. Marco
Camurri, whom we gratefully acknowledge.

The code utilized in this is available at the following link: https://github.com/

iit-DLSLab/muse.
Additionally, a software framework named DLS2 has been employed to manage real-

time communication between the robot sensors and the estimator. DLS2 is a real-time
communication framework designed to simplify interfacing with robot sensors and actu-
ators. While not directly related to state estimation, DLS2 is instrumental in facilitating
the development of real-time applications on mobile robots. A detailed description of
the DLS2 framework is provided in Appendix A.

4.2 Introduction

Perceptive information is essential for quadrupedal locomotion on unstructured terrain,
where complex maneuvers are often required, as illustrated by Grandia et al. [103]. Ac-
curate state estimation is a fundamental component for ensuring robust locomotion and
perception in quadruped robots across diverse applications. It provides critical data
on the robot’s position, orientation, and velocity within its environment. In this con-
text, real-time feedback is essential, because it enables the robot to adapt its gait,
make prompt decisions, and plan locomotion strategies to maintain balance and stabil-
ity. Moreover, state estimation is crucial for mitigating sensor failures or inaccuracies,
allowing the robot to switch to alternative sensors or deploy recovery strategies to ensure
safe and reliable navigation.

Research in state estimation has focused on integrating both proprioceptive sen-
sors (e.g., IMUs, encoders, torque sensors) and exteroceptive sensors (e.g., cameras,

48

https://github.com/iit-DLSLab/muse
https://github.com/iit-DLSLab/muse

4.2. Introduction

LiDARs). Exteroceptive sensors, primarily used for precise and low-drift robot pose esti-
mation, have significantly advanced navigation as well as visual and LiDAR-based SLAM,
as discussed by Cadena et al. [60]. However, as highlighted in Chapter 2, exterocep-
tive sensors face challenges in adverse conditions, such as failures due to environmental
factors, frequency-related controller limitations, and delays in measurement acquisition.

To overcome these challenges, exteroceptive sensors are often complemented with
proprioceptive sensors, which provide high-frequency data for rapid updates on the
robot’s state. Proprioceptive sensors excel in environments where exteroceptive sensors
may struggle, such as poorly lit areas, occluded regions, or spaces lacking distinctive fea-
tures, ensuring reliable state estimation across a broader range of operating conditions.

For legged robots, additional information can be obtained from leg kinematics, which
provides precise details about the movement and positioning of each leg, further enhanc-
ing state estimation. Several notable studies have explored the fusion of proprioceptive
sensors to improve state estimation. For instance, Bloesch et al. [7, 31], and Hartley
et al. [36] have proposed methods that integrate data from proprioceptive sensors, in-
cluding joint encoders, IMUs, and force sensors, while leveraging contact information
to accurately estimate the robot’s state. These studies have demonstrated the impor-
tance of incorporating contact information to enhance state estimation, particularly in
challenging terrains.

Additionally, several studies have investigated the impact of terrain on state esti-
mation for legged robots. Fahmi et al. [46] demonstrated that assuming static contact
conditions can lead to inaccurate state estimates, especially when the robot traverses
soft or uneven terrain. Similarly, Bloesch et al. [41] and Jenelten et al. [42] highlighted
the challenges of maintaining accurate state estimation under dynamic and slippery con-
ditions. These studies reveal that while avoiding the assumption of static contact can
improve results, relying solely on proprioceptive state estimation is insufficient to provide
a drift-free pose. For instance, in previous work by Santana et al. [49], the authors
introduced an innovative InEKF designed specifically for legged robots, relying solely
on proprioceptive sensors and incorporating robust cost functions in the measurement
update. Although the use of these robust cost functions significantly reduced drift, they
were not able to completely eliminate it. This underscores the necessity of incorporating
exteroceptive sensor data for enhanced accuracy.

Over the years, various techniques for multi-sensor state estimation in legged robots
have been developed. For instance, the Pronto state estimator (Camurri et al. [6])
employs an EKF to fuse data from an IMU and leg kinematics, while incorporating
pose corrections derived from stereo vision and LiDAR inputs. Similarly, WALK-VIO, as

49

4.2. Introduction

described in (Lim et al. [3]), combines data from an IMU, a camera, and joint encoders
to estimate the robot’s state. WALK-VIO uses a walking-motion-adaptive leg kinematic
constraint that dynamically adjusts based on the robot’s body motion.

However, both Pronto and WALK-VIO operate under a no-slip assumption, meaning
they presume the robot maintains consistent contact with the ground without experi-
encing slippage or falls. While this assumption simplifies the state estimation process, it
fails to account for slippage or loss of contact, which can significantly affect the accuracy
and reliability of state estimation, particularly in challenging or unpredictable terrains.

The work by Teng et al. [90] utilizes an InEKF for state estimation in a bipedal
robot navigating slippery terrain. This approach integrates vision-based velocity mea-
surements from a Realsense T265 Tracking Camera [104] with data from an IMU and leg
kinematics. To address potential measurement noise from the camera, an online noise
parameter tuning method is introduced, allowing the system to adapt dynamically. In an-
other study, Kim et al. [4] proposed the STEP state estimator, which estimates the end-
effector’s pose using pre-integrated foot velocity factors and body speed data obtained
from a stereo camera. This method eliminates the need for contact detection and the
assumption of non-slip conditions, offering a more flexible approach to state estimation.

The main drawback is that these two last methods rely heavily on camera inputs,
which can sometimes be unreliable. This dependence may impact the accuracy and
robustness of the estimated states, particularly in environments where visual inputs are
degraded or unavailable.

VILENS, introduced by Wisth et al. [2], integrates data from IMU, kinematics, Li-
DAR, and cameras using factor graphs to provide robust state estimation, even when
individual sensors encounter failures. That said, this state estimator has not been applied
to close the loop with the controller during online experiments. As a result, it has yet
to demonstrate its capability for providing real-time feedback in robot control scenarios.

Leg-KILO, introduced by Ou et al. [93], is a state estimator that integrates LiDAR
odometry with kinematic and inertial measurements to determine a robot’s pose, using
loop closures to mitigate drift over time. Although loop closures can introduce abrupt
corrections in the global map frame, systems like ROS typically address this by separating
the local “odom” frame (for controller feedback) from the global “map” frame (for drift-
free localization). With proper frame management, loop closures need not cause instabil-
ity in real-time applications. However, in environments where loop opportunities are lim-
ited or delayed, such as extended corridors, drift may accumulate for longer periods before
it is corrected at the global level. How real-time control is affected ultimately depends
on how well the system keeps global corrections separate from the local control loop.

50

4.3. Contributions

4.3 Contributions

In this chapter, we introduce MUSE, an innovative state estimator for legged robots,
building on the earlier work of Fink and Semini [34]. In this prior research, the authors
developed a nonlinear observer for attitude estimation and computed leg odometry based
on a quadruped model, combining these through sensor fusion using a Kalman Filter
(KF). Expanding on that foundation, this work presents a comprehensive state estimation
pipeline. It incorporates exteroceptive sensors and integrates the slip detection module
from Nisticò et al. [1] (see Chapter 3), which uses a kinematics-based approach to detect
simultaneous slippage of one or more legs.

This new approach results in a low-drift state estimator that is robust to sensor
failures and adaptable to uneven, unstructured environments.

In this context, the main contributions of this work are stated as follows:

• Integration of a Slip Detection Module in State Estimation: To the best
of our knowledge, this is the first multi-sensor (proprioceptive and exteroceptive)
state estimation pipeline to include a dedicated slip detection module, critical for
navigating uneven and unstructured terrain.

• Real-Time Feedback for Locomotion Control: Unlike previous approaches
such as WALK-VIO (Lim et al. [3]), STEP (Kim et al. [4]), and VILENS (Wisth
et al. [2]), MUSE has been successfully employed to provide real-time feedback
to the locomotion controller in experiments conducted on the Aliengo robot.

• Extensive Online and Offline Evaluation Across Platforms and Scenarios:
Our work was validated on the Aliengo robot in indoor environments on difficult
scenarios, and on the ANYmal B300 robot, in the Fire Service College (FSC)
Dataset (Wisth et al. [2], Camurri et al. [6]). We demonstrated significant
improvements in state estimation accuracy compared to state-of-the-art methods:

– 67.6% reduction in the translational errors compared to Pronto (Camurri
et al. [6]).

– 26.67% reduction in the translational errors compared to VILENS (Wisth
et al. [2]).

– 45.9% reduction in the absolute trajectory error compared to Two-State
Information Filter (TSIF) (Bloesch et al. [7]).

– Superior rotational accuracy and frequency performance compared to DLIO
(Chen et al. [8]), a LiDAR-inertial odometry system.

51

4.4. Outline

To support the research community, we will make MUSE’s code publicly available under
an open-source license. The code will be accessible at this link.

4.4 Outline

The remainder of this chapter is structured as follows: in Section 4.5, we provide a
theoretical background on the Kalman filter, nonlinear observers, and the eXogeneous
Kalman filter. In Section 4.6, we present the MUSE formulation, including the robot
models, exteroceptive odometry, contact estimation, leg odometry, slip detection, atti-
tude observer, and sensor fusion. In Section 4.7, we present the experimental results
obtained with the Aliengo and ANYmal robots. Finally, in Section 4.8, we discuss the
results, and Section 4.9 concludes the chapter.

4.5 Theoretical Background

This section provides a concise overview of the theoretical foundations of the Kalman
filter, Nonlinear observers, and the eXogeneous Kalman filter, which form the basis of
the MUSE formulation.

A detailed exploration of state estimation theory is beyond the scope of this work.
For readers seeking a deeper understanding, we recommend consulting the following
authoritative references: (Kalman et al. [105], Simon [106], Mahony et al. [107], Johansen
and Fossen [108]).

4.5.1 Kalman Filter

The Kalman filter is an optimal estimator for linear systems with Gaussian noise,
designed to minimize the mean squared error of the state estimate. It achieves this by
combining two key steps:

• Prediction: Propagating the system dynamics to estimate the state at the next
time step.

• Correction: Updating the state estimate based on new measurements.

The Kalman filter operates under the assumption that the system is linear and that
the process and measurement noises are white, Gaussian, and mutually independent.

For discrete-time systems, the filter alternates between prediction and update steps.
In continuous-time systems, it operates continuously by solving differential equations for

52

https://github.com/iit-DLSLab/muse

4.5. Theoretical Background

state estimation and covariance. In this section, we derive the equations for both discrete
and continuous-time Kalman filters. Readers interested in a detailed derivation of the
continuous-time equations from the discrete-time ones are referred to (Simon [106]),
where the continuous-time Kalman filter is derived by taking the limit as the sample
time approaches zero. Continuous-time Kalman filters are particularly useful when the
system is continuously observed, requiring ongoing state estimation updates.

4.5.1.1 Linear Time-Varying Continuous-Time Kalman Filter

Considering a continuous-time linear system described by the following state-space
model:

ẋ(t) = Ax(t) + Bu(t) + w(t), w(t) ∼ (0, Qc) (4.1a)

y(t) = Cx(t) + v(t), v(t) ∼ N(0, Rc) (4.1b)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp is the output, A ∈ Rn×n,
B ∈ Rn×m, and C ∈ Rp×n are the system matrices, and w and v are the process
and measurement noise, respectively. The Kalman filter estimates the state x given
the measurements y and the input u. Qc and Rc are the covariance matrices of the
process and measurement noise, respectively. In this context, state estimation is updated
continuously over time to accommodate real-time system dynamics.

Prediction of the State and Error Covariance The state evolution is governed by
the following differential equation:

˙̂x(t) = Ax̂(t) + Bu(t) (4.2)

Meanwhile, the covariance of the estimation error evolves according to the Riccati dif-
ferential equation:

Ṗ(t) = AP(t) + P(t)A⊤ + Qc −P(t)C⊤R−1
c CP(t) (4.3)

This equation captures the evolution of the uncertainty in the state estimation over
time, balancing the system’s intrinsic dynamics, process noise, and the contribution of
measurements to reduce the uncertainty.

53

4.5. Theoretical Background

Update with Continuous Measurements In the continuous-time scenario, the mea-
surement update takes place continuously, and the Kalman gain is expressed as:

K(t) = P(t)C⊤R−1
c (4.4)

The corresponding update for the state estimate is given by:

˙̂x(t) = ˙̂x(t) + K(t)(y(t)−Cx̂(t)) (4.5)

where y(t)−Cx̂(t) represents the innovation or measurement residual. The error co-
variance is updated according to:

Ṗ(t) = P(t)−K(t)CP(t) (4.6)

4.5.1.2 Linear Time-Varying Discrete-Time Kalman Filter

Now, if we discretize the system with a sample time T the discrete-time equations are
obtained as:

xk+1 = Fxk + Guk + Λwk, wk ∼ (0, Q) (4.7a)

yk = Cxk + vk, vk ∼ N(0, R) (4.7b)

The objective of the Kalman filter is to estimate the state xk from the noisy measure-
ments yk, while minimizing the covariance of the state estimation error.

Prediction of the State and Error Covariance The predicted state, based on the
previous state estimate, is given by:

x̂k|k−1 = Fx̂k−1|k−1 + Guk−1 (4.8)

where x̂k−1|k−1 is the previous state estimate, uk−1 is the input at the previous iteration,
and x̂k|k−1 is the predicted state at time k, based on the information up to time k− 1.
The error covariance prediction is:

Pk|k−1 = FPk−1|k−1F⊤ + ΛQΛ⊤ (4.9)

Update Step with Discrete Measurements The Kalman filter updates the state
estimate using the new measurement yk. The innovation (or measurement residual),

54

4.5. Theoretical Background

which quantifies the difference between the observed measurement and the predicted
measurement, is given by:

ỹk = yk −Hx̂k|k−1 (4.10)

while the innovation covariance is:

Sk = HPk|k−1H⊤ + R (4.11)

The Kalman gain determines how much weight is given to the new measurement:

Kk = Pk|k−1H⊤Sk
−1 (4.12)

The state is updated by incorporating the new measurement, as follows:

x̂k|k = x̂k|k−1 + Kkỹk (4.13)

while the error covariance is updated as:

Pk|k = (I−KkH)Pk|k−1 (4.14)

where I is the identity matrix.

4.5.2 Nonlinear Kalman Filters

Up to this point, our discussion has focused on linear filters for linear systems. However,
in reality, purely linear systems are an idealization since most systems are inherently
nonlinear. For such systems, extensions of the Kalman filter, collectively referred to as
Nonlinear Kalman Filters, are employed.

In a general nonlinear system, the dynamics and measurements are governed by the
following nonlinear equations:
Continuous-Time Nonlinear System:

ẋ(t) = f(x(t), u(t)) + w(t), w(t) ∼ (0, Qc) (4.15a)

y(t) = h(x(t)) + v(t), v(t) ∼ N(0, Rc) (4.15b)

55

4.5. Theoretical Background

Discrete-Time Nonlinear System:

xk+1 = f(xk, uk) + Λwk, wk ∼ (0, Q) (4.16a)

yk = h(xk) + vk, vk ∼ N(0, R) (4.16b)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp is the output, f and h are
the nonlinear state transition function and nonlinear measurement function, respectively;
w and v are the gaussian and zero-mean process and measurement noise, respectively,
and Qc and Rc are the covariance matrices of the process and measurement noise,
respectively.

In nonlinear systems, the state distributions (e.g. p(xk|y1:k)) may no longer remain
Gaussian due to the nonlinearities in the system dynamics and measurement functions.
These nonlinearities in the f(·) and h(·) functions require approximations or numeri-
cal methods to handle the transformations of both the state and the error covariance.
Moreover, unlike linear systems, there is no closed-form analytical solution for state
estimation in nonlinear systems, making approximations a necessity. These approxima-
tions are typically designed to strike a balance between computational efficiency and
estimation accuracy.

To address these challenges, several extensions of the Kalman filter have been devel-
oped, including:

• Extended Kalman Filter (EKF) (McGee and Schmidt [109]): The EKF lin-
earizes the system dynamics and measurement equations around the current state
estimate using a first-order Taylor expansion. It is widely used in practice due to
its simplicity and computational efficiency. However, the EKF has notable limita-
tions, including the need for a good initial guess, the requirement for the system
to remain approximately linear, and the risk of divergence when the linearization
is inadequate.

• Unscented Kalman Filter (UKF) (Wan and Van Der Merwe [110]): The UKF
employs a deterministic sampling technique to generate a minimal set of sample
points (sigma points) that accurately capture the mean and covariance of the state
distribution. Unlike the EKF, the UKF avoids linearization errors, making it more
accurate for highly nonlinear systems. However, this accuracy comes at the cost of
increased computational complexity due to the need for sigma point propagation.

• Particle Filter (PF) (Salmond and Gordon [111]): The PF represents the state

56

4.5. Theoretical Background

distribution using a set of weighted particles, making it a non-parametric filter
capable of approximating arbitrary distributions. This flexibility makes the PF
suitable for highly nonlinear and non-Gaussian systems. However, it is computa-
tionally intensive and prone to sample degeneracy, particularly in high-dimensional
state spaces.

In the following section (Section 4.5.2.1), we will focus on the EKF, as it serves as
the foundation for understanding the eXogeneous Kalman Filter (XKF). The theoretical
framework for the XKF is presented in Section 4.5.4, and its implementation is applied
in the Attitude Observer formulation discussed in Section 4.6.6.

4.5.2.1 Extended Kalman Filter

The EKF enables state estimation for nonlinear models by linearizing the system dynamics
around the current state estimate. In this section, we derive the EKF equations step by
step and explain the underlying theory in detail.

Continuous-Time EKF Similar to the Linear Time-Varying (LTV)–KF, the EKF op-
erates by predicting the state and error covariance based on the system dynamics, and
then updating the state and covariance using new measurements. The primary distinc-
tion is that the EKF linearizes the system dynamics and measurement functions around
the current state estimate. Starting from the continuous-time nonlinear system described
in Equation (4.15), the nonlinear functions f(x, u) and h(x) are linearized around the
current estimate using a first-order Taylor expansion:

Prediction step: The prediction step advances the state and covariance forward in
time based on the system dynamics. The continuous-time nonlinear system equations
are used to compute:

˙̂x(t) = f(x̂(t), u(t)) + ∂f

∂x

∣∣∣∣∣
x̂(t)

(x(t)− x̂(t)) + ∂f

∂u

∣∣∣∣∣
û(t)

(u(t)− û(t)) (4.17)

where f(x̂(t), u(t)) is the predicted evolution of the state estimate, ∂f
∂x

∣∣∣∣∣
x̂(t)

(x(t)− x̂(t))

accounts for the deviations in the state x(t), around x̂x(t), while ∂f
∂u

∣∣∣∣∣
û(t)

(u(t)− û(t))

accounts for the deviations in the input u(t), around û(t). The error covariance evolves
according to:

57

4.5. Theoretical Background

Ṗ(t) = ∂f

∂x

∣∣∣∣∣
x̂(t)

P(t) + P(t)∂f

∂x

∣∣∣∣∣
⊤

x̂(t)
+ Qc −P(t)∂h

∂x

∣∣∣∣∣
⊤

x̂(t)
R−1

c
∂h

∂x

∣∣∣∣∣
x̂(t)

P(t) (4.18)

where P(t) is the error covariance matrix. If we call F = ∂f
∂x

∣∣∣∣∣
x̂(t)

, H = ∂h
∂x

∣∣∣∣∣
x̂(t)

, and

Q = Qc, the prediction step can be written as:

˙̂x(t) = Fx̂(t) + Gu(t) (4.19a)

Ṗ(t) = FP(t) + P(t)F⊤ + Q−P(t)H⊤R−1
c HP(t) (4.19b)

Update step: The update step corrects the state estimate when a new measurement
y(t) becomes available. The innovation, which represents the discrepancy between the
observed measurement and the predicted measurement, is given by:

ỹ(t) = y(t)− h(x̂(t)) (4.20)

while the innovation covariance is:

S(t) = HP(t)H⊤ + Rc (4.21)

where H = ∂h
∂x

∣∣∣∣∣
x̂(t)

is the Jacobian of the measurement function, and Rc is the mea-

surement noise covariance.
The Kalman gain, that balances the uncertainty in the prediction and measurement,

is:
K(t) = P(t)H⊤S(t)−1 (4.22)

In the end, the state and the covariance updates are:

x̂(t) = x̂(t) + K(t)ỹ(t) (4.23a)

P(t) = (I−K(t)H)P(t) (4.23b)

where I is the identity matrix.

Discrete-Time EKF For the discrete-time case, we begin with the discrete-time sys-
tem described in Equation (4.16). Similar to the continuous-time case, the functions
f(xk, uk) and h(xk) are nonlinear and are therefore linearized around the current state

58

4.5. Theoretical Background

estimate using a first-order Taylor expansion:

f(xk, uk) ≈ f(x̂k|k−1, uk) + ∂f

∂x

∣∣∣∣∣
x̂k|k−1

(xk − x̂k|k−1) + ∂f

∂u

∣∣∣∣∣
ûk

(uk − uk) (4.24)

The measurement function is linearized as:

h(xk) ≈ h(x̂k|k−1) + ∂h

∂x

∣∣∣∣∣
x̂k|k−1

(xk − x̂k|k−1) (4.25)

We define the matrices Fk and Hk as:

Fk = ∂f

∂x

∣∣∣∣∣
x̂k|k−1

, Hk = ∂h

∂x

∣∣∣∣∣
x̂k|k−1

(4.26)

These matrices represent the Jacobians of the system dynamics and measurement func-
tions, respectively.

Prediction step: The prediction step advances the state forward in time using the
nonlinear state function:

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (4.27)

The error covariance prediction is:

Pk|k−1 = FkPk−1|k−1F⊤
k + ΛQΛ⊤ (4.28)

where Λ is the Jacobian of the process noise function.
Update step: The update step refines the state estimate by incorporating the new

measurement yk. The innovation is given by:

ỹk = yk − h(x̂k|k−1) (4.29)

while the innovation covariance is:

Sk = HkPk|k−1H⊤
k + R (4.30)

where H = ∂h
∂x

∣∣∣∣∣
x̂k|k−1

is the Jacobian of the measurement function, and R is the mea-

surement noise covariance. The Kalman gain is computed as:

Kk = Pk|k−1Hk
⊤S−1

k (4.31)

59

4.5. Theoretical Background

The state update is:
x̂k|k = x̂k|k−1 + Kkỹk (4.32)

while the error covariance update is:

Pk|k = (I−KkHk)Pk|k−1 (4.33)

where I is the identity matrix.

Summary of the EKF Theory and Interpratation The EKF assumes that the
system dynamics and measurement model are locally linear at each time step. This
approximation enables the filter to apply linear Kalman filter theory to nonlinear systems.
Additionally, the EKF operates recursively, updating the state estimate and its covariance
incrementally at each time step, which is computationally efficient compared to batch
processing all measurements. By linearizing around the current state estimate, the EKF
effectively handles systems with mild nonlinearities.

However, in highly nonlinear systems, the linearization may introduce significant
errors, rendering the filter suboptimal. To address this issue, we explored the XKF, which
is used in combination with the Nonlinear Observer (NLO) for attitude estimation. The
theoretical foundations of these observers are detailed in the following sections.

4.5.3 Nonlinear Observer

In dynamic systems, particularly those involving rigid-body mechanics, attitude estima-
tion refers to determining the orientation of a body in space relative to a reference
frame. Nonlinear observers play a crucial role in such problems, as the dynamics and
measurements are inherently nonlinear, and the state space (e.g., rotation matrices on
SO(3)) exhibits a complex geometric structure. Mahony et al. [112], explored the de-
sign of nonlinear state observers for kinematic systems with symmetry, providing a robust
theoretical framework for nonlinear observer design. Their approach leverages the geo-
metric properties and inherent symmetry of these systems. Building on their work, we
present a methodology for designing observers that utilize symmetry properties, resulting
in autonomous error dynamics and strong convergence guarantees.

A kinematic system evolves according to:

ẋ = f(x, v) (4.34)

where x ∈ X is the state of the system on a state space X (e.g. SO(3), SE(3), or their

60

4.5. Theoretical Background

homogeneous spaces), v ∈ V is the velocity input, tipically measured or known, and
f(x, v) is the state dynamics, often dependent on the symmetry properties of the system.
The system outputs are given as:

y = h(x) (4.35)

where y ∈ Y represents the measurement model, mapping the state x to an output
space Y .

Both the state dynamics f(x, v) and measurement functions h(x) are nonlinear, ne-
cessitating the use of advanced estimation techniques. Additionally, the state space X
often resides on a nonlinear manifold (e.g., rotation matrices in SO(3)), rendering con-
ventional linear estimator techniques inadequate. Achieving global or almost-global con-
vergence of the estimation error remains a significant challenge, particularly in rotation,
and pose estimation problems.

Many mechanical systems exhibit symmetry properties due to their invariant behavior
under specific transformations (e.g., rotations and translations). These properties can
be leveraged to simplify observer design, particularly for kinematic models where the
state evolves linearly with respect to velocity inputs. For instance, the attitude of a
rigid body in 3D space can be represented as a rotation, commonly modeled using a
unit quaternion. The unit quaternion space forms a 3D sphere, which is a Lie group. In
such cases, the state space X is typically modeled as a homogeneous space X = G/H
where G is the symmetry group, and H is the stabilizer subgroup.

Definition: A system is said to be equivariant if the state dynamics f(x, v) respect
the group action of G, and the output y = h(x) are consistent under the same symmetry.
For instance, in attitude estimation, the state x ∈ SO(3) represents a rotation matrix
describing the orientation of a body in three-dimensional space. The system exhibits
invariance under changes in the reference frame, which is a symmetry of the rotation
group SO(3).

The observer design is based on the following principles:

• Error Dynamics: The error dynamics are defined on the tangent space of the
Lie group, which is a vector space. This approach enables the error dynamics to
remain linear, even though the overall system dynamics are nonlinear. This is a
key advantage of leveraging the geometric properties of Lie groups for observer
design. The error between the true state Xtrue and the estimated state Xobserver

is represented using two canonical error functions, both of which reside in the
symmetry group G:

61

4.5. Theoretical Background

– Right-Invariant Error: E = XobserverX−1
true, commonly used when sensors

are body-fixed (e.g., IMU measurements on a drone).

– Left-Invariant Error: E = X−1
trueXobserver, suitable for systems where sensors

measure in the global frame.

• Autonomous Dynamics: The error dynamics are autonomous, meaning they
evolve independently of the system’s input.

Ė = f(E) (4.36)

where E is the error. This property greatly simplifies stability analysis, as the error
dynamics are determined solely by the error state itself, without being influenced
by the specific trajectory of the system. By decoupling the error evolution from
the input, the observer design can focus entirely on the convergence properties of
the error dynamics. This ensures that stability and convergence guarantees are
valid for any trajectory of the system, making the observer robust to variations in
the input and system dynamics.

• Convergence: The observer is designed to ensure that the error dynamics con-
verge to zero, which guarantees that the estimated state produced by the observer
asymptotically approaches the true state. This is achieved by carefully constructing
the observer’s update laws to stabilize the error dynamics, leveraging the system’s
geometric properties and symmetry to ensure robustness and convergence across
a wide range of operating conditions.

• Symmetry: The observer design leverages the inherent symmetries of the system
to simplify the error dynamics and ensure convergence. By aligning the observer
structure with the system’s symmetry properties, the error dynamics are made
more tractable, often leading to autonomous or linearized forms. This approach
enhances the observer’s robustness and facilitates the design of control laws that
guarantee the convergence of the estimated state to the true state.

• Global Convergence: The observer is designed to ensure global convergence,
meaning the error dynamics converge to zero regardless of the initial conditions.
This guarantees that the observer’s state estimate will asymptotically approach the
true state for any starting point in the state space, providing robust and reliable
performance across a wide range of scenarios.

62

4.5. Theoretical Background

• Computational Efficiency: The observers are designed to be computationally
efficient, ensuring they can operate in real-time applications. This efficiency is
achieved by simplifying the mathematical operations and leveraging system sym-
metries, enabling the observer to deliver accurate state estimates with minimal
computational overhead. This makes them well-suited for time-critical tasks in
dynamic systems.

The corrective mechanism in the observer dynamics is the symmetry-preserving in-
novation term ∆(X̂, y), which is designed as an equivariant function of the output
error. This term ensures that the correction respects the system’s symmetry properties,
allowing the observer to remain consistent with the underlying geometric structure:

∆(X̂, y) = k
∑

i

wi(X̂⊤vi − yi) (4.37)

where k is a gain parameter, wi are the weights for each reference vector, vi are reference
vectors in the global frame (e.g. gravity, magnetic field), and yi are measured vectors
in the local frame. By aligning the estimated vectors with the measured ones, the
innovation ensures convergence while preserving the system’s symmetry.

Additionally, the innovation term is designed as a gradient descent process on the
error function, aiming to minimize a Lyapunov candidate function V (E). This approach
guarantees that the error decreases monotonically, contributing to the stability of the
observer. Formally the innovation term ∆(X̂, y) is constructed to satisfy:

∆(X̂, y) = −∇V (E) (4.38)

A typical Lyapunov candidate is:

V (E) = 1
2 ||vex(Pa(E))||2 (4.39)

where Pa(E) = 1
2(E−E⊤) is the skew-symmetric part of the error matrix E, and vex()

maps skew-symmetric matrices to vectors. The Lyapunov function V (E) is positive
definite and monotonically decreasing, ensuring that the error converges to zero:

V (E) > 0, ∀E ̸= I (4.40a)

V̇ (E) < 0 (4.40b)

The benefits of leveraging symmetries in observer design are significant. By exploiting

63

4.5. Theoretical Background

these properties, the observer achieves global convergence of the error dynamics for
many systems. In cases such as SO(3), where topological constraints prevent full global
stability, the observer can still achieve almost global convergence, meaning the error
dynamics converge to zero for all initial conditions except for a set of measure zero (e.g.,
singularities).

Additionally, the symmetry-aware design inherently mitigates the effects of noise by
ensuring that corrections are geometrically consistent with the system’s structure. This
approach distributes corrections evenly across measurements, preserving the system’s in-
tegrity and improving robustness against disturbances and sensor noise. These properties
make symmetry-based observers particularly effective for applications involving complex
geometries and dynamic environments.

4.5.4 eXogeneous Kalman Filter

The eXogenous Kalman Filter (XKF) originally proposed by Johansen and Fossen [108] is
a two-stage estimator that combines a global nonlinear observer (NLO) and a Linearized
Kalman Filter (LKF). This approach seeks to leverage the complementary strengths
of nonlinear observers and linearized Kalman filtering while mitigating their individual
weaknesses, particularly in the context of state estimation for nonlinear systems.

The XKF is proposed to combine the global stability of NLOs with the optimality
of Kalman filtering. By using the output of an NLO as an exogenous trajectory for
the linearization in a second-stage LKF, the approach avoids the destabilizing feedback
present in other nonlinear filters such as the EKF.

The XKF consists of two cascaded stages:

• Nonlinear Observer: The first stage is a global nonlinear observer that provides
a globally stable state estimate x̂(t) and ensures boundedness of its estimation
error, enabling robust initialization for the second stage.

• Linearized Kalman Filter: The second stage is a linearized Kalman filter that
Uses the NLO’s output as an exogenous trajectory for linearization and applies the
Kalman filter to estimate deviations from the NLO trajectory.

The nonlinear system is described as:

ẋ(t) = f(x(t), t) + G(t)w(t), (4.41a)

y(t) = h(x(t), t) + e(t) (4.41b)

64

4.5. Theoretical Background

where x(t) is the state vector, y(t) is the measurement vector, f(x(t), t) is the nonlinear
dynamics, h(x(t), t) is the nonlinear measurement model, G(t) is the process noise
matrix, w(t) is the process noise, and e(t) is the measurement noise.

In traditional methods like the EKF, the system is linearized about its own state
estimate. This feedback loop can destabilize the filter, especially for systems with high
nonlinearity. In the XKF, the system is linearized about the NLO’s estimate x̂(t), which
is treated as an exogenous signal. This eliminates destabilizing feedback.

The XKF inherits the global stability properties of the NLO, which means that if the
NLO achieves uniform global asymptotic stability or stronger properties (e.g., Globally
Exponentially Stable (GES)), the cascade is globally stable. This is formalized through
the cascade error dynamics, where the LKF operates on the error dynamics of the NLO.

4.5.4.1 Design of the XKF

The NLO generates a bounded estimate x̂(t) using Lyapunov-based techniques. The
system dynamic equations are:

˙̂x(t) = f(x̂(t), t) + L(y(t)− h(x̂(t), t)) (4.42)

where L is the observer gain designed to ensure global stability of the error dynamics.
The error between the true state x(t) and the observer estimate x̂(t) is defined as

x̃ = x− x̂, and satisfies:

˙̃x(t) = A(t)x̃(t) + B(t)w(t) + L(t)e(t) (4.43)

where A(t) = ∂f
∂x

∣∣∣∣∣
x̂(t)

, B(t) = G(t), and L(t) = ∂h
∂x

∣∣∣∣∣
x̂(t)

are the Jacobians of the system

dynamics and measurement functions, respectively.
Then, the LKF operates on the error dynamics x̃(t), which represents the deviation

from the NLO’s trajectory. The LKF is a standard Kalman filter that estimates the error
state x̃(t) and its covariance P(t) using the linearized system dynamics and measurement
functions. The linearized dynamics are obtained by expanding f(x, t) and h(x, t) around
the NLO’s estimate x̂(t):

ẋ = f(x̂(t), t) + F(x̂(t), t)x̃ + G(t)w(t) (4.44a)

y = h(x̂(t), t) + H(x̂(t), t)x̃ + e(t) (4.44b)

where F (x̂(t), t) = ∂f
∂x

∣∣∣∣∣
x̂(t)

and H(x̂(t), t) = ∂h
∂x

∣∣∣∣∣
x̂(t)

are the Jacobians of the system

65

4.5. Theoretical Background

dynamics and measurement functions, respectively. Then the correction is applied with
the LKF updating the state deviation estimate x̃(t):

˙̃x(t) = F(x̂(t), t)x̃(t)+G(t)w(t)+K(t)(y(t)−h(x̂(t), t−H(x̂(t), t)x̃(t))) (4.45)

where K(t) is the Kalman gain obtained from the Riccati equation.
In summary, the XKF demonstrates robustness by combining the NLO’s ability to

globally stabilize the system and the LKF’s optimal noise rejection properties for small
deviations. The XKF is particularly well-suited for systems with high nonlinearity, where
the EKF may struggle due to linearization errors. The XKF is computationally efficient
because the modular design of the XKF allows each stage (NLO and LKF) to be imple-
mented independently, enabling parallel processing or optimized implementations suited
to specific hardware, making it suitable for real-time applications. In fact, the NLO typ-
ically involves solving nonlinear differential equations, which can often be implemented
using efficient numerical integration techniques (e.g., Euler or Runge-Kutta methods),
while the LKF, operating on linearized deviations x̃, has a computational effort similar
to the standard Kalman filter, which is lightweight for real-time use.

4.5.5 Summary of the Theoretical Background

In this section, we have discussed part of the theoretical background of state estima-
tion for nonlinear systems. We have discussed the Kalman filter, a powerful tool for
linear systems, and its extensions for nonlinear systems, including the Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), and Particle Filter (PF). We have also
described the Nonlinear Observer, a global observer that ensures global stability of the
error dynamics. Finally, we have presented the eXogenous Kalman Filter (XKF), a two-
stage estimator that combines the global stability of the Nonlinear Observer with the
optimality of the Kalman filter. Although EKF-based methods are widely adopted in
robotic applications, they can struggle with strong nonlinearities and inaccurate initial
conditions, sometimes leading to divergence or estimator “failure”. For instance, in a
previous work by Fink and Semini [34], the authors observed that an EKF-only approach
could become unstable under large initialization errors, whereas the XKF maintained
robust performance under the same conditions.

In the following sections, we will apply these theoretical concepts to the design of
the MUSE state estimator for quadruped robots.

66

4.6. MUSE Formulation

Exteroceptive Odometry Attitude Observer

Exteroceptive Sensors

Camera
Odometry

LiDAR
Odometry

Camera LiDAR

Proprioceptive Sensors
IMU Joint

Encoders
F/T

Sensors

images point
cloud

NLO XKF

KF

Contact
Estimation

Slip
Detection

Leg
Odometry

Sensor Fusion

Robot State

Figure 4.1: Overview of the MUSE state estimation pipeline.

4.6 MUSE Formulation

The goal of MUSE is to determine the pose, twist, and contact state of a quadruped
robot with respect to an arbitrary inertial navigation frame. The robot is equipped with
a suite of proprioceptive and exteroceptive sensors, including IMUs, force sensors, joint
encoders, torque sensors, cameras, and LiDARs.

As illustrated in Fig. 4.1, MUSE combines the measurements from two exteroceptive
sensors, Camera and LiDAR, with three proprioceptive sensors, IMU, force/torque sen-
sors, and joint encoders. The system comprises several key components: exteroceptive
odometry (Section 4.6.2), an attitude observer (Section 4.6.6), a contact estimation
module (Section 4.6.3), a slip detection module (Section 4.6.5), a leg odometry module
(Section 4.6.4), and a sensor fusion algorithm (Section 4.6.7).

• The attitude Observer includes a NLO and an XKF.

• The slip detection and leg odometry modules incorporates Joint State (JS), robot
Kinematics/Dynamics (KD) model, and GRFs estimated from the dynamic model.

• The sensor fusion algorithm employs a KF to perform position and linear velocity
estimation.

The following sections provide a detailed description of each component.

67

4.6. MUSE Formulation

(a) The 21 kg Aliengo robot from Unitree [5].
(b) The 30 kg ANYmal B300 robot
from ANYbotics [43].

Figure 4.2: Robots used to test MUSE.

4.6.1 Robot Models

In this work, we utilized the dynamic and kinematic models of the 20 kg Aliengo robot,
(Fig. 4.2a) and the 30 kg ANYmal B300, (Fig. 4.2b). However, the state estimator
modules are designed to be generalizable and can be applied to any legged robot equipped
with the proper sensors. The following reference frames are defined: the navigation frame
N , the body frame B which is located at the geometric center of the robot’s trunk, with
its basis oriented forward, left, and up, the IMU sensor frame I, which is located at the
origin of the accelerometer within the IMU mounted onto the trunk, the camera frame
C for Aliengo (Fig. 4.3a), located at the optical center of the front-mounted camera,
and the LiDAR frame L for ANYmal (Fig. 4.3b), located at the center of the sensor
mounted on top of the robot.

The reference frame of a variable is indicated using a right superscript. For instance,
xn, xb, xi, xc, and xl represent the variable x expressed in the inertial frame N , body
frame B, IMU frame I, camera frame C, and LiDAR frame L, respectively.

The robots are equipped with a six-axis IMU mounted on the trunk, and each joint is
outfitted with an absolute encoder. Additionally, Aliengo is equipped with front-mounted
cameras, while ANYmal features torque sensors and a LiDAR.

The sensors provide measurements modeled as x̃ = x + bx + nx, where bx, and
nx represent the bias and noise of x, respectively. The biases are assumed to be either
constant or slowly varying over time, while all noise components are modeled as Gaussian
with zero mean (Simon [106]). The sensors are described as follows:

- Camera: for the indoor lab experiments with Aliengo, we used the Intel Realsense
T265, a lightweight tracking camera. This device is equipped with an IMU and

68

4.6. MUSE Formulation

(a) Aliengo frames.
(b) ANYmal B300 frames. Picture
adapted from (Wisth et al. [113]).

Figure 4.3: Robot Reference Frames: the navigation frame N , the body frame B, the IMU
sensor frame I, the camera frame C for Aliengo, and the LiDAR frame L for ANYmal.

two fisheye lenses offering a 163◦ field of view. It is capable of delivering camera
odometry at a frequency of up to 200 Hz, making it suitable for high-speed state
estimation tasks.

- LiDAR: for experiments using the FSC Dataset with the ANYmal B300 robot, we
employed the Velodyne VLP16 LiDAR as the sole external sensor. This LiDAR
operates at a frequency of approximately 10 Hz, delivering reliable spatial data for
state estimation.

- IMU: the IMU consists of a 3-DOFs gyroscope and 3-DOFs accelerometer. The
accelerometer measures the specific force f ii = ai + gi ∈ R3: where ai ∈ R3 is
the acceleration of the body in I and gi ∈ R3 is the acceleration due to gravity
in I. The gyroscope measures angular velocity ωi ∈ R3 in I.

- Encoders and Torque sensors: the absolute encoders provide the joint position
qi ∈ R and joint speed q̇i ∈ R, respectively. ANYmal is equipped with torque
sensors that directly measure τi ∈ R3, while for Aliengo, the joint torque is esti-
mated based on the motor current.

4.6.2 Exteroceptive Odometry

Since the primary goal of MUSE is to perform robust sensor fusion, we did not develop a
dedicated exteroceptive odometry module. Instead, we leveraged odometry data provided
by existing algorithms to determine sensor pose and velocity, which were then used to
update the robot’s state.

69

4.6. MUSE Formulation

• Lab Experiments with Aliengo: Odometry data was obtained using the Intel
Realsense T265 tracking camera. The T265 provides visual-inertial odometry at
up to 200 Hz, allowing precise pose and velocity estimation in structured indoor
environments.

• FSC Dataset with ANYmal B300: To obtain LiDAR odometry for the outdoor
dataset, we used a loosely coupled method, relying on external LiDAR odometry
that operates independently of the rest of the system. Specifically, we employed
KISS-ICP (Vizzo et al. [9]), a LiDAR odometry algorithm renowned for its sim-
plicity, efficiency, and robustness. KISS-ICP performs pose estimation by sequen-
tially aligning LiDAR point clouds using a classical point-to-point Iterative Closest
Point (ICP) algorithm. The method begins by applying a constant velocity motion
model to deskew scans, correcting distortions caused by the sensor’s motion during
data capture. It then uses a voxel-based downsampling approach to reduce the
computational load while preserving essential geometric features for alignment.
To ensure accurate data associations, KISS-ICP incorporates an adaptive thresh-
olding scheme that dynamically adjusts based on the system’s observed motion
profile. Finally, a robust optimization process refines the pose estimation, ensuring
resilience to noise and outliers. This loosely coupled approach enables KISS-ICP
to provide reliable pose updates, which integrate seamlessly into our system as an
external source of LiDAR-based information.

By relying on these established odometry sources, we ensured accurate pose and
velocity inputs for the state estimation pipeline without the need to implement additional
odometry computation methods.

4.6.3 Contact Estimation

The contact estimation is executed exaclty as explained in Section 3.6, but some equa-
tions are reported here for clarity.

To estimate the foot contact with the ground, it is assumed that the contact point
lies at a fixed location at the center of the foot. The contact state α ∈ R4 is estimated
by computing the GRFs using the dynamics equation of motion:

M(x̄)¨̄x + h(x̄, ˙̄x) = τ̄ + J⊤Fgrf (4.46)

where x̄ = [x⊤η⊤q⊤]⊤ ∈ R18 is the generalized robot state, given by the position
and attitude of the base, and the joint angles. Then ˙̄x ∈ R18 and ¨̄x ∈ R18 are the

70

4.6. MUSE Formulation

corresponding generalized velocities and accelerations, M ∈ R18×18 is the joint-space
inertia matrix, h ∈ R18 is the vector of Coriolis, centrifugal, and gravity forces, τ̄ =
[0 τ] ∈ R18 where τ ∈ R12 is the vector of joint torques, and finally Fgrf ∈ R12 is the
vector of GRFs, while J ∈ R18×12 is the floating base Jacobian.

Then, we solve for the GRFs Fgrf of each leg using the actuated part of the dynamics:

Fgrf,ℓ = −α(J⊤
ℓ(qℓ))

−1(τℓ − hℓ(x̄ℓ, ˙̄xℓ)) (4.47)

Finally, assuming that all external forces are applied to the feet during the stance
phase, we first estimate the GRFs. Following this, the contact state αℓ for every leg ℓ

is determined as:

αℓ =


1 if ∥Fgrf,ℓ∥ > Fmin

0 otherwise
(4.48)

where Fmin ∈ R is the threshold value, and Fgrf,ℓ ∈ R3 is the GRF of the leg ℓ ∈ L.

4.6.4 Leg Odometry

Leg odometry estimates the incremental motion of the floating base using the forward
kinematics of the legs that are in stable contact with the ground. This measurement
can be expressed as either a relative pose or a velocity measurement. In our system,
we specifically formulate linear velocity measurements. If there is no slippage, then the
contribution of each leg ℓ ∈ L to the overall velocity of the base is:

xb
ℓ = −αℓ(Jℓ(qℓ)q̇ − ωb × xb

ℓ) (4.49)

and the base velocity is:

ẋb = 1
ns

L∑
ℓ

ẋb
ℓ (4.50)

where ns = ∑L
ℓ αℓ is the number of stance legs.

4.6.5 Slip Detection

Leg odometry is prone to drift when the robot walks on slippery surfaces. To address
this, we employ the slip-detection algorithm presented in Chapter 3 to identify when
leg odometry measurements become unreliable due to slippage and compensate for the
resulting drift.

For each leg ℓ, we use the flag βℓ ∈ [0, 1], which is set to 1 if slippage is detected and

71

4.6. MUSE Formulation

0 otherwise. Once a single slippage or multiple slippages are detected, we increase the leg
odometry covariance R1 in the sensor fusion algorithm (Section 4.6.7, Equation (4.60))
to reduce the influence of the leg odometry measurements. This adjustment ensures
that errors in leg odometry do not adversely affect the base pose or velocity estimates.

4.6.6 Attitude Observer

To estimate the attitude, we implemented a cascaded structure composed of a NLO
(Section 4.5.3) and an XKF (Section 4.5.4), where the XKF linearizes around a glob-
ally stable exogenous signal from the NLO. This cascade structure preserves the global
stability properties of the NLO, while benefiting from the near-optimal properties of the
Kalman Filter. The proof of stability is provided in (Johansen and Fossen [108]).

More in detail, for attitude estimation we specifically chose to represent the rotation
using a quaternion, as it avoids singularities. The state is defined as x = [q⊤ b⊤]⊤ ∈ R7

where q ∈ R4 is the quaternion, and b ∈ R3 represents the IMU’s bias. The input to
the system is u = ωb ∈ R3 which corresponds to the 3-axis gyroscope readings from
the IMU. The dynamics of the filter are described by:

q̇n
b = 1

2

 0 −(ωb − bb)⊤

(ωb − bb)⊤ −S(ωb − bb)

 qn
b (4.51a)

ḃb = 0 (4.51b)

where S(·) is the skew-symmetric matrix function. We use a multiplicative error function,
to respect the quaternion norm constraint eq = (qn

b)−1 ⊗ q̂n
b , where ⊗ is quaternion

multiplication (Markley and Crassidis [114]).
The general vector of measurements is given by z = Rb

nyn, where yn are a set of k
constant references vector in N :

yb = [(yb
1)⊤

. . . (yb
k)⊤]

⊤
∈ R3k (4.52a)

yn = [(yn
1)⊤ . . . (yn

k)⊤]⊤ ∈ R3k (4.52b)

4.6.6.1 Nonlinear Observer

In (Mahony et al. [107]) the authors introduced a class of nonlinear observers for attitude
estimation that leverages the symmetry properties of the group structure to achieve
strong convergence properties (Mahony et al. [112]). Many extensions of this work have
been made, particularly the observer introduced by Grip et al. [115], which we utilize in

72

4.6. MUSE Formulation

this system. The NLO is designed to exploit these symmetry properties to improve the
robustness and stability of attitude estimation in dynamic environments. The observer
is defined as:

˙̂Rn
b = R̂n

b S(ωb − b̂b) + σKn
pJ(R̂n

b) (4.53a)
˙̂bb = Proj

(
b̂b,−k vex

(
P

(
R̂n

b Kn
pJ(R̂n

bs)
)))

(4.53b)

where Kp ∈ R3×3 is a symmetric positive-definite gain matrix, k > 0 ∈ R is a scalar
gain, σ ≥ 1 ∈ R is a scaling factor. The term R̂n

bs = sat(R̂s
n), where the function

sat(X) saturates every element of X to lie within the range [−1, 1]. The function
Proj(x, y) is a parameter projection that ensures that ∥b̂∥ < Mb, where Mb > 0 ∈ R is
a known constant upper bound on the gyro bias. Additionally, P(X) = 1

2(X + X⊤) is
the symmetrization of any square matrix X, and J is the stabilizing injection term

J(R̂n
b , t) =

k∑
j=1

(
yn
j − R̂n

b yb
j

)
yb
j

⊤ (4.54)

The observer is Globally Exponentially Stable (GES) for all initial conditions, assum-
ing that there exists k > 1 non-collinear vector measurements, i.e.,

∣∣∣yn
i × yn

j

∣∣∣ > 0 (4.55)

where i, j ∈ 1, . . . , k, and yn
i , · · ·yn

j are the vector measurements. Furthermore, if
there is only one measurement the observer is still GES if the following Persistency of
Excitation (PE) condition holds:
if there exist constants T > 0 ∈ R and γ > 0 ∈ R such that, for all t ≥ 0

∫ t+T

t
yn
1(τ)yn

1(τ)⊤ dτ ≥ γI (4.56)

holds then yn
1 is PE. The proof of stability is given in (Grip et al. [115]).

4.6.6.2 eXogeneous Kalman Filter

The eXogeneous Kalman Filter (XKF) introduced by Johansen and Fossen [108], is
similar to an EKF in that it linearizes a nonlinear model about an estimate of the
state and then applies the typical Linear Time-Varying (LTV) Kalman filter (KF) to the
linearized model. If the estimate is close to the true state, then the filter performs near-
optimally. However, if the estimate deviates significantly from the true state, the filter
can quickly diverge. To overcome this problem, the XKF linearizes around a globally

73

4.6. MUSE Formulation

stable exogenous signal from a NLO. The cascaded structure preserves the global stability
properties of the NLO while maintaining the near-optimal properties from the KF. The
equations of the XKF are:

˙̂x = fx + F(x̂− x̄) + K(z− hx −H(x̂− x̄)) (4.57a)

Ṗ = FP + PF⊤ −KHP + Q (4.57b)

K = PH⊤P−1 (4.57c)

where F = ∂fx

∂x
|x̄,u, H = ∂hx

∂x
|x̄,u, x̄ ∈ Rn is the bounded estimate of x from the globally

stable NLO. The measurement vector is z ∈ R6, and further considerations are necessary
to understand how we obtained it.

In ideal conditions, a 3-axis accelerometer and a 3-axis magnetometer provide the
measurements (feedback) to the filter. While the magnetometer can be used to esti-
mate the orientation of an object relative to the Earth’s magnetic field, there are some
limitations when using a magnetometer for determining the orientation of a quadruped
robot. Magnetometers are sensitive to local magnetic fields, which can be influenced
by nearby electric motors, high currents, and metallic objects (such as buildings) in the
environment where the robots operate. To address these challenges, we adopted an
alternative strategy to obtain the measurement vector. In a typical scenario, the mag-
netometer would provide a vector aligned with the Earth’s magnetic north. However,
instead of relying on the magnetometer, we propose a “pseudo-north” strategy using the
exteroceptive sensors (LiDAR or camera) for external odometry. This approach provides
the rotation from the sensor local frame (S) to the navigation frame (N). We used a
constant vector, which remains fixed in the navigation frame N , and rotated it by the
amount given by the sensor’s orientation. We then further rotated this measurement
into the body frame B. In the end, the measurement vector is obtained as:

z = [f⊤
b m⊤

b]⊤ ∈ R6 (4.58)

where fb = Rb
i fn ∈ R3 is the acceleration given by the accelerometer rotated in B, and

mb = Rb
sRs

n[1 0 0]⊤ ∈ R3 is the “pseudo-magnetometer measure”, in which [1 0 0]⊤

is a constant vector in N pointing to a “pseudo” North, rotated in B.

74

4.6. MUSE Formulation

4.6.7 Sensor Fusion

The inertial measurements are fused with the leg odometry and the camera or LiDAR
odometry. Decoupling the attitude from position and linear velocity provides a significant
benefit: the resulting dynamics become LTV, ensuring inherent stability properties. In
other words, the filter is designed in such a way that it will not diverge within a finite
timeframe. The KF has the following dynamics:

˙̂x = fx + K(z− hx) (4.59a)

Ṗ = FP + PF⊤ −KHP + Q (4.59b)

K = PH⊤R−1 (4.59c)

where the state x = [xn⊤vn⊤]⊤ ∈ R6 represents the position and velocity of the base,
the input u = (Rn

b f bi − gn) ∈ R3 correspond to the acceleration of the base, and the
vector z denotes the measurement vector. The dimensions of z vary depending on the
specific measurements. In the case of indoor experiments with Aliengo, where the T265
camera is the sole external sensor, z has a dimension of 9. This is because the T265
outputs both pose and twist. In this case that, z = [Rn

b ẋb
ℓ

⊤ Rn
b ẋb

c
⊤ Rn

b xb
c

⊤]
⊤
∈ R9,

where Rn
b ẋb

ℓ
⊤ represents the leg odometry (base velocity), and Rn

b ẋb
c

⊤ and Rn
b xb

c
⊤ are

the camera’s velocity and position, respectively, rotated into the navigation frame N .
On the other hand, on the FSC Dataset, since KISS-ICP outputs only the pose, the
measurement vector is z = [Rn

b ẋb
l

⊤ Rn
b xb

l
⊤]

⊤
∈ R6, where xb

l is the position of the
LiDAR in the body frame B. The Kalman gain K is a matrix ∈ R6×9 when all the
measurements are available, or ∈ R6×6 when the sensor velocity is not available.

P ∈ R6×6 is the covariance matrix, and Q ∈ R6×6 is the process noise. The
measurement noise covariance matrix is a diagonal block matrix, assuming that the
measurements are uncorrelated:

R =


R1 03 03

03 R2 03

03 03 R3

 or R =
R1 03

03 R2

 (4.60)

where R1 ∈ R3×3 is the covariance of the leg odometry and its values are updated
in case of slippage. R2 ∈ R3×3 is the covariance of the exteroceptive sensor velocity
measurement (when available), and R3 ∈ R3×3 is the covariance of the exteroceptive

75

4.6. MUSE Formulation

sensor position measurement. Then

fx =
vn

u

 and F =
03 I3

03 03

 (4.61)

where I3 ∈ R3×3 and 03 ∈ R3×3 are the identity matrix and null matrix, respectively.
For the same reason previously explained, the matrix H ∈ R6×9 or H ∈ R6×6 is:

H =


03 I3

03 I3

I3 03

 or H =
03 I3

I3 03

 (4.62)

4.6.8 Considerations about time execution

To maintain efficient computation despite the slower arrival of exteroceptive measure-
ments, we rely on internal measurements, such as the IMU and joint states, for attitude
estimation (Section 4.6.6) and sensor fusion (Section 4.6.7). The other corrections are
applied only when exteroceptive data becomes available.

We analyzed and measured the execution time of each key block within the sys-
tem. The results show an average execution time of 0.05 ms per block, demonstrating
MUSE’s ability to process and deliver state information with high speed and precision.
The evaluated blocks include: • Contact estimation (Section 3.6) • Leg Odometry
(Section 4.6.4) • Slip Detection (Section 4.6.5) • Attitude Estimation (Section 4.6.6)
• Sensor Fusion (Section 4.6.7). With the total of the blocks completing in just 0.05
ms, these results validate MUSE’s capacity for real-time operation, making it ideal for
environments that require low-latency and accurate state information.

Our approach is particularly suited for real-time performance because it avoids op-
timization over past timeframes, in contrast to optimization-based methods. Instead,
the modular structure of our system allows for low-latency, efficient state estimation.
For instance, the attitude observer primarily uses high-frequency IMU data, ensuring
continuous state estimation. When slower exteroceptive data, such as from LiDAR or a
camera, becomes available, it serves to refine the estimate without interrupting ongoing
high-frequency operations. Meanwhile, the filter operates solely with IMU data, and
the stability properties of our NLO and XKF ensure short-term stability even without
exteroceptive updates. This modularity eliminates bottlenecks by prioritizing fast IMU
measurements, maintaining stability via NLO and XKF, even when exteroceptive data is
unavailable. Similarly, in the sensor fusion module, we rely on the high-frequency data

76

4.7. Experimental Results

from the IMU and leg odometry (via encoders) to maintain real-time state estimation.
When additional data from the camera or LiDAR arrives, it enhances the estimate without
disrupting the high-frequency process. This approach ensures robust real-time perfor-
mance, particularly crucial for closed-loop control, where speed and stability are critical.

Furthermore, the real-time capabilities of MUSE were demonstrated in a closed-loop
experiment with the Aliengo robot in Section 4.7.2.1, where an MPC+PD controller
operated at 100 Hz and 1000 Hz, respectively. MUSE successfully provided real-time
feedback to the controller on the robot’s linear velocity and orientation, enabling the
robot to navigate challenging environments, including stairs, rocks, and slippery terrain.

4.7 Experimental Results

In this section, we present the experimental results obtained with the MUSE state esti-
mator. We begin with an offline evaluation, where we analyze the performance of the
state estimator in a controlled lab environment (Sections 4.7.1.1 and 4.7.1.2). Next, we
move on to online evaluation, where we close the loop with a controller (Section 4.7.2.1).
For this first set of experiments, ablation studies are done by comparing the performance
of MUSE to those obtained with an Intel RealSense T265. Finally, to provide a compre-
hensive evaluation, we benchmark MUSE against state-of-the-art state estimators using
the FSC dataset with the ANYmal B300 robot (Section 4.7.2.2). This ensures that
MUSE’s performance is rigorously compared with leading methods in the field.

The accuracy of the estimated trajectories is evaluated using the Absolute Trajec-
tory Error (ATE) and Relative Pose Error (RPE) statistics, which are computed with
the EVO Python package (Grupp [116]). The ATE represents the average Euclidean
distance between the estimated and ground truth trajectories, while the RPE measures
the Euclidean distance and angular difference between the estimated and true poses at
each time step, quantifying the system’s accuracy in tracking changes in both position
and orientation (Zhang and Scaramuzza [117]).

4.7.1 First results: Offline evaluation

In the first set of experiments, we assessed the offline performance of the MUSE
state estimator in a controlled lab environment. The Aliengo robot performed various
tasks, including walking up and down stairs (Section 4.7.1.1) and traversing rocky and
slippery terrain (Section 4.7.1.2). For these experiments, we utilized visual odometry
from an Intel Realsense T265 binocular visual-inertial tracking camera, which is already

77

4.7. Experimental Results

embedded in the robot.
The performance of the state estimator was evaluated by comparing its estimates

with ground truth data, which was collected using a Vicon motion capture system. This
system provided the robot’s true pose for evaluation purposes. The sensor frequencies
were 250 Hz for the IMU and leg kinematics, and 200 Hz for the camera. The MUSE
state estimator operates at a frequency of 250 Hz.

4.7.1.1 Aliengo walking up and down stairs

In the first experiment, the Aliengo robot used a crawling gait to navigate up and down
stairs in our lab at IIT in Genoa (see Fig. 4.4). For this experiment, we utilized the
IMU data and camera orientation as measurements for the XKF (Section 4.6.6), while
linear velocity from the leg odometry, and both linear position and velocity data from
the camera as measurements for the sensor fusion KF (Section 4.6.7).

We compared the results of our state estimator with the Vicon ground truth data,
and we benchmarked the performance with those obtained using only the T265 camera,
which is widely used as a standalone state estimator in other works (for instance by Bayer
and Faigl [118]). The goal of this experiment was to demonstrate that by integrating
leg odometry and an attitude observer with the camera odometry, we could improve
the robot’s state estimation while also increasing robustness through the use of multiple
sensor modalities.

The results of the experiment are shown in Fig. 4.5, and Tab. 4.1. Fig. 4.5a is
particularly significant as it highlights how MUSE corrected the substantial error in the
z-position of the T265 estimate. Tab. 4.1 further supports these improvements, showing
enhanced ATE and RPE performance.

The ATE and RPE statistics were calculated over a 5-meter trajectory, with the ATE
evaluated over a 1-meter segment. The results clearly demonstrate that the MUSE state
estimator outperforms the T265 camera in both ATE and RPE statistics. Notably, MUSE
also achieves a lower RPE for orientation, with a value of 6.529◦ compared to 7.792◦

for the T265 camera. Additionally, the MUSE state estimator operates at a frequency
of 250 Hz, while the T265 camera operates at 200 Hz.

Table 4.1: Aliengo climbing stairs: ATE and RPE over 1 m (∼ 5 m trajectory)

ATE [m] RPE [m] RPE [◦] Freq [Hz]
T265 0.089 0.081 7.792 200
MUSE 0.045 0.077 6.529 250

78

4.7. Experimental Results

Figure 4.4: Aliengo climbing stairs

0 10 20 30 40 50 60 70 80
-0.5

0

0.5

x
[m

]

Position

GT MUSE T265

0 10 20 30 40 50 60 70 80

0

2

4

y
[m

]

0 10 20 30 40 50 60 70 80
Time [s]

-0.2
0

0.2
0.4

z
[m

]

(a) Aliengo on stairs: base position

0 10 20 30 40 50 60 70 80

-20

0

20

ro
ll

[/
]

Orientation

GT MUSE T265

0 10 20 30 40 50 60 70 80

-20

0

20

p
it
ch

[/
]

0 10 20 30 40 50 60 70 80
Time [s]

-20

0

20

ya
w

[/
]

(b) Aliengo on stairs: base orientation

Figure 4.5: Aliengo climbing stairs: Comparison of the Ground Truth (GT) vs. position
and orientation estimated by MUSE vs. the only T265 camera

79

4.7. Experimental Results

4.7.1.2 Aliengo walking on uneven and slippery terrain

In the second experiment performed in our lab at IIT, the Aliengo robot used a crawling
gait to traverse uneven terrain consisting of a pile of rocks, followed by a white plastic
sheet coated with liquid soap (Fig. 4.6). The robot was equipped with the same sensors
as in the previous experiment, and the same measurements were used for the XKF and
the sensor fusion KF.

In this experiment, both the T265 camera odometry and the slip detection mod-
ule contributed together to compensate for the drift in the leg odometry, making the
improvement provided by the slip detection less noticeable (Fig. 4.7). The ATE and
RPE statistics for both the T265 camera alone and the complete pipeline are shown in
Tab. 4.2. To better highlight the benefits of using slip detection, we deactivated the
camera and relied solely on proprioceptive measurements (leg odometry and IMU) along
with the slip detection module (Slip Detection (SD)). The version of MUSE using only
proprioceptive data is referred to as “P-MUSE”. When the slip detection module was
deactivated, this configuration was called “P-MUSE no SD”. In this experiment, starting
from approximately 6.5 seconds, at least one of the robot’s legs was constantly in contact
with uneven or slippery terrain. In Tab. 4.2, the upper rows display the comparison of
estimates between the T265 camera and the complete MUSE pipeline. The lower rows
show a comparison of the proprioceptive MUSE estimates, both with and without the slip
detection module (P-MUSE and P-MUSE no SD, respectively). The results in Tab. 4.2
demonstrate that slip detection enhances estimation accuracy, especially when camera
data is unavailable.

Figure 4.6: Aliengo walking on uneven and slippery terrain

80

4.7. Experimental Results

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

x
[m

]

Position

GT MUSE T265

0 5 10 15 20 25 30 35 40

0

2

4

y
[m

]

0 5 10 15 20 25 30 35 40
Time [s]

-0.2
0

0.2
0.4

z
[m

]

(a) Aliengo on uneven and slippery terrain: base
position

0 5 10 15 20 25 30 35 40

-20

0

20

ro
ll

[/
]

Orientation

GT MUSE T265

0 5 10 15 20 25 30 35 40

-20

0

20

p
it
ch

[/
]

0 5 10 15 20 25 30 35 40
Time [s]

-20

0

20

y
aw

[/
]

(b) Aliengo on uneven and slippery terrain: base
orientation

Figure 4.7: Aliengo walking on uneven and slippery terrain: Comparison of the GT vs.
position and orientation estimated by MUSE and the only T265 camera.

Table 4.2: Aliengo walking on uneven and slippery terrain: ATE and RPE over 1 m
(∼ 5 m trajectory)

ATE [m] RPE [m] RPE [◦] Freq [Hz]
T265 0.097 0.100 2.151 200
MUSE 0.096 0.092 1.897 250

P-MUSE no SD 0.912 0.893 1.903 250
P-MUSE 0.425 0.120 1.899 250

81

4.7. Experimental Results

4.7.2 Main results: Online evaluation and Benchmarking

In this section, we present the results obtained from two different robotic platforms:
Aliengo tested in an online lab experiment walking a longer trajectory (Section 4.7.2.1),
and ANYmal B300 evaluated on a pre-recorded outdoor dataset (Section 4.7.2.2). Since
our state estimator functions as an odometry system, no loop closures (i.e., processes
to recognize previously visited locations to mitigate drift) have been executed on the
estimated trajectory.

4.7.2.1 Online evaluation: Closing the loop with the controller

Figure 4.8: Aliengo in a closed-loop experiment: During the closed-loop experiment,
Aliengo walked up and down the stairs, then on rocks and slippery terrain, repeating these
tasks three times.

This test involved a closed-loop experiment with the Aliengo robot, where it navigated
difficult terrain using a crawl gait, over a trajectory of approximately 45 meters, all while
being commanded by a joystick. During this experiment, the robot completed three laps
around the lab, traversing stairs, rocks, and slippery terrain (Fig. 4.8).

The controller used in this experiment is the Model Predictive Controller (MPC)
described in (Amatucci et al. [119]). The MPC receives base pose and velocity inputs
from MUSE and generates torque commands for the joint Proportional-Derivative (PD)
controllers of the robot. The MPC operates at a frequency of 100 Hz, while the PD
controllers run at 1000 Hz. Real-time communication was managed using the software
framework described in (Bertol et al. [120]), and in Appendix A. The pipeline was
executed on an Intel NUC i7 with 32 GB of memory. In this setup, the IMU and
leg kinematics have an acquisition frequency of 1000 Hz, while the camera odometry
runs at 200 Hz, and MUSE operates at 1000 Hz. The average execution time for each

82

4.7. Experimental Results

module within MUSE is 0.05 milliseconds, ensuring efficient processing and real-time
state updates.

For MUSE, the inputs to the XKF included the camera orientation Rn
c ∈ R3×3 and

IMU acceleration fb ∈ R3. The linear velocity ẋn
b ∈ R3 from the leg odometry, linear

position xn
c ∈ R3 and velocity ẋn

c ∈ R3 from the camera, along with the estimated ori-
entation Rn

b ∈ R3×3 from the XKF were used as inputs for Sensor Fusion (SF) module.

(a) Aliengo in the closed-loop experiment: base
position.

(b) Aliengo in the closed-loop experiment: base
orientation.

Figure 4.9: Aliengo on uneven and slippery terrain: Comparison of position and orientation
estimations between the GT and MUSE, MUSE without the slip detection module (MUSE with
no SD), Proprioceptive MUSE (P-MUSE), and Proprioceptive MUSE without the slip detection
module (P-MUSE with no SD). The grey shaded areas indicate that the robot is walking on
rocks, while the red ones indicate when the robot is walking on the slippery patch. The position
plot (left) clearly shows that the drift is higher when SD is not active.

Figure 4.10: Aliengo on uneven and slippery terrain: GT vs. Linear Velocity estimated by
MUSE during the closed-loop experiment. Left: linear velocity during the entire experiment.
Right: Zoom on the time interval [185-230] seconds (pink shaded area in the left plot).

83

4.7. Experimental Results

Table 4.3: Aliengo in a closed loop experiment: ATE and RPE over 1 m (∼ 45 m
trajectory)

T265 MUSE MUSE no SD P-MUSE P-MUSE no SD
ATE [m] 0.24 0.24 0.25 0.57 0.67
RPE [m] 0.10 0.08 0.09 0.10 0.12
RPE [◦] 0.35 0.25 0.26 0.27 0.27

Freq [Hz] 200 1000 1000 1000 1000

As shown in Figs. 4.9a and 4.9b, the position and orientation estimates provided
by MUSE closely match the ground truth. Exteroceptive measurements improved the
robot’s state estimation, particularly in correcting drift, which is commonly observed
along the vertical direction (z-axis) when relying solely on proprioception. Camera odom-
etry, in particular, compensates for drift when the robot is walking on uneven terrain
(Fig. 4.9a), making the benefits of the slip detection (SD) module less pronounced.
However, the importance of SD becomes evident when using the proprioceptive-only
version of MUSE (P-MUSE), as shown in Fig. 4.9a. In these cases, the SD module helps
partially correct position drift during slippage, as leg odometry becomes unreliable in
such situations.

Additionally, since the MPC controller requires the robot’s linear velocity as feedback,
Fig. 4.10 shows that the estimated linear velocity tracks the ground truth effectively.
While the signal may appear noisy at first glance, this is due to the natural swaying
motion of the robot during slow walking. The variations reflect the true velocity signal,
not noise, capturing the dynamics of the gait. The zoomed-in view (highlighted in yellow)
provides a closer look at these variations, illustrating that the tracking performance
remains accurate despite the robot’s swaying motion.

Tab. 4.3 presents the ATE and RPE statistics over 1 meter segment of the 60 meters
trajectory. These results confirm that the MUSE pipeline delivers accurate position
estimates. For this long trajectory, the ATE is comparable to the T265 camera, but
MUSE operates at a higher frequency and shows lower RPE in both translation and
orientation. The advantage of the SD module is evident in P-MUSE, where the ATE
increases when SD is not utilized. Furthermore, it is important to highlight that the
yaw angle is accurately estimated even when using only proprioceptive sensors, thanks
to the globally stable Attitude Observer, which ensures bounded orientation errors and
prevents filter divergence within a finite time frame.

84

4.7. Experimental Results

4.7.2.2 Offline evaluation and benchmarking: FSC Dataset with ANYmal
B300

This section presents the results obtained by running MUSE on the Fire Service College
Dataset (FSC) (Wisth et al. [2]). The Fire Service College, located in the United
Kingdom, is a firefighting training facility, and one of its test areas represents a simulated
industrial oil rig with a total dimension of 32.5m × 42.5m.

In the experiment, ANYmal trotted at a speed of 0.3 m/s, completing three laps
before returning to the initial position, covering a total distance of 240 meters over
33 minutes. The environment posed significant challenges due to the presence of stand-
ing water, oil residue, gravel, and mud. For this experiment, results were obtained using
LiDAR as the exteroceptive sensor. The orientation from LiDAR odometry was used as
an external measurement for the attitude estimate (Section 4.6.6), while the position
estimate was used in the sensor fusion KF (Section 4.6.7).

The ground truth (GT) trajectory was obtained with millimeter accuracy by combin-
ing the absolute positions taken from a Leica Total Station T16, with a SLAM system
based on ICP registration and IMU data.

We computed the ATE over the entire 240 m trajectory, and RPE every 10 meters
segments. The performance in terms of ATE and RPE was benchmarked against other
state-of-the-art state estimators: DLIO (Chen et al. [8]), a LiDAR-inertial odometry
algorithm, and three state estimators tailored for quadruped robots, Pronto (Camurri
et al. [6]), VILENS (Wisth et al. [2]) and Two-State Information Filter (TSIF) (Bloesch
et al. [7]). The values for Pronto and VILENS on the FSC Dataset are taken from
their respective papers, while the data for TSIF was provided along with the dataset.
Pronto and VILENS fuse exteroceptive and proprioceptive measurements, while TSIF
relies solely on proprioceptive data. All of these systems are odometry systems that do
not utilize loop closures. Results are shown in Tab. 4.4.

Compared to DLIO, MUSE achieved a similar ATE and translational RPE, with only a
3 cm and 2 cm difference, respectively. However, MUSE demonstrated a lower rotational
RPE and operated at a higher frequency. Specifically for this experiment, MUSE runs
at 400 Hz, as both leg kinematics and the IMU run at that frequency, whereas DLIO
operates at an average of 100 Hz. Although incorporating leg kinematics introduces
slightly higher ATE due to noisy leg odometry, it enhances the estimator’s robustness
and speed in terms of frequency. Notably, the fusion of different sensor modalities
helps compensate for the limitations of individual sensors. While fusion does not always
guarantee more accuracy than using a single sensor, it provides a more robust estimation

85

4.7. Experimental Results

0 5 10 15 20 25
x [m]

-5

0

5

10

15

20

25

30

35

y
[m

]

Trajectory

GT
DLIO
MUSE

(a) FSC-Dataset: Ground-truth trajectory
(blue) vs. estimated trajectories using DLIO and
MUSE.

-5 0 5 10 15 20 25 30 35
x [m]

-5

0

5

10

15

20

25

30

35

y
[m

]

Trajectory

GT
TSIF
P-MUSE

(b) FSC-Dataset: Ground-truth trajectory
(blue) vs. estimated trajectory using TSIF and
P-MUSE.

Figure 4.11: Trajectory of the FSC Dataset: Comparison of the trajectory estimated using
MUSE, P-MUSE, and two state-of-the-art state estimators: DLIO and TSIF.

process by allowing each sensor to compensate for potential failures or inaccuracies in
others. Additionally, sensor fusion enables the estimator to achieve higher frequencies
by relying on high-frequency inputs.

When compared to Pronto and VILENS, MUSE outperforms both in terms of transla-
tional RPE, with improvements of 67.6% and 26.7%, respectively. The rotational RPE is
similar to that of VILENS, although Pronto paper (Camurri et al. [6]) does not provide a
rotational error metric, nor do either of these systems provide ATE data. When compar-
ing proprioceptive-only state estimators, P-MUSE and TSIF, our algorithm demonstrates
greater accuracy in terms of ATE, reducing the mean error by nearly 50%. This is the
most significant metric for evaluating overall trajectory discrepancy, reflecting global ac-
curacy. The rotational RPE is similar between P-MUSE and TSIF, but P-MUSE shows
a slightly higher translational RPE. This indicates that while TSIF captures short-term
movements with higher precision, small errors accumulate over time, resulting in inferior
global accuracy compared to P-MUSE.

LiDAR-inertial Legged robots (multi-sensor) Legged robots (proprio)
DLIO Pronto VILENS MUSE MUSE no SD TSIF P-MUSE P-MUSE no SD

ATE [m] 0.14 N.A N.A. 0.17 0.18 4.40 2.38 2.57
RPE [m] 0.09 0.34 0.15 0.11 0.12 0.05 0.12 0.15
RPE [◦] 1.9 N.A. 1.14 1.78 1.85 1.96 1.93 1.96

Freq [Hz] 100 400 400 400 400 400 400 400

Table 4.4: FSC Dataset: ATE and RPE over 10 m (∼ 240 m trajectory). The first column
is DLIO, then we have multi-sensor state estimators tailored for legged robots (Pronto, VILENS
and MUSE), and on the right part of the table, there are proprioceptive state estimators for
legged robots (TSIF and MUSE). The bold values indicate the best performance achieved by
the legged robot state estimators.

86

4.8. Discussion

Visual comparisons of the ground truth and estimated trajectories are shown
in Fig. 4.11. In Fig. 4.11a, we can see that DLIO and MUSE trajectories closely overlap
with the ground truth, while in Fig. 4.11b, it is evident that our proprioceptive pipeline
outperforms TSIF in terms of global accuracy.

4.8 Discussion

MUSE is a modular state estimator for legged robots that fuses proprioceptive and
exteroceptive sensor data. The results show that MUSE is capable of providing accurate
and robust state estimation for legged robots in various environments. The modular
structure of MUSE allows for the integration of different sensor modalities, enabling
the system to compensate for the limitations of individual sensors and improve overall
estimation accuracy. The real-time capability of MUSE was demonstrated in the closed-
loop experiment with the Aliengo robot, where MUSE provided real-time feedback to the
controller on the robot’s linear velocity and orientation. The results of the benchmarking
experiment on the Fire Service College dataset show that MUSE outperforms other state
estimators in terms of global and local accuracy, demonstrating the effectiveness of the
proposed approach.

We want to highlight that the primary contribution of our approach is not just the
inclusion of additional odometry from the camera (T265) or the LiDAR-based algorithm
(KISS-ICP), but rather the fusion of multiple sensor modalities into a comprehensive state
estimator specifically designed for legged robots, which can handle challenging environ-
ments, such as uneven and slippery terrain. While previous works such as Pronto (Ca-
murri et al. [6]) or STEP (Kim et al. [4]) also utilized exteroceptive sensors (cameras or
LiDAR) for state estimation, they lack a dedicated slip detection module. These systems
address the problem of slippage indirectly through their exteroceptive sensors, but our
method provides a more robust solution by directly integrating a slip detection module
into the state estimator. The integration of slip detection is crucial for scenarios where
exteroceptive sensors (camera or LiDAR) may fail, be obstructed, or become unavail-
able (e.g., in low-visibility or cluttered environments). In such cases, relying solely on
exteroceptive sensors can lead to drift, particularly in the z-position and yaw, which are
typically difficult to estimate accurately without external observations. By incorporating
slip detection, our method can maintain accurate state estimation even when extero-
ceptive data is missing or unreliable, providing redundancy and robustness that previous
approaches do not offer. This can be seen in Tabs. 4.2–4.4, where we show that adding
slip detection improves the performance in terms of ATE and RPE, and in Fig. 4.9a,

87

4.8. Discussion

where it is clear that adding slip detection helps reduce the drift in the z-position.
Furthermore, we demonstrated that our MUSE framework has real-time capabilities

by showcasing an experiment where MUSE provides velocity and orientation feedback
to a high-frequency locomotion controller. This is a significant advancement, as other
state-of-the-art methods, such as VILENS (Wisth et al. [2]), only provide feedback to
mapping policies that do not require high-frequency operation. Although we recognize
that exteroceptive measurements are not strictly required for a closed-loop state es-
timator, and that they may introduce discontinuities if used for control feedback, we
experimented that leg odometry measurement alone is not immune to abrupt changes,
since it relies on discrete foot contact detection. In challenging environments, misdiag-
nosed contacts and slip events can cause leg-odometry velocity to be unreliable, leading
to drift in the state estimation. Incorporating exteroceptive odometry, such as velocity
estimates from the T265 tracking camera, helps the state estimator to correct or reduce
the velocity errors. Furthermore, reliable pose feedback is essential for fully autonomous
tasks, such as navigation and path following, where even small drift can accumulate over
long traverses or in complex terrain. While high-frequency pose estimates may not always
be strictly necessary, having access to them can help capture and react to rapid changes
in the robot’s motion. Consequently, by fusing both leg and exteroceptive odometry,
MUSE delivers more robust pose estimation, balancing the respective limitations of each
sensor modality while preserving real-time control performance. Online feedback to a
locomotion policies is critical in dynamic environments and in scenarios where quick
reaction times are needed, and we believe this is a key aspect of our contribution.

4.8.1 Limitations

Although MUSE has demonstrated strong capabilities, it has some limitations, particu-
larly in the following areas:

• High friction in the Aliengo’s joints: The contact estimation module occa-
sionally experiences inaccuracies due to high friction in the Aliengo’s joints, which
affects its dynamics. This can lead to errors in the slip detection module, which
depends on precise contact estimation to detect slippage, and also in the leg
odometry measurements, which rely on accurate contact information. Improving
the contact estimation module to better account for high friction in the joints is
a potential direction for future work.

• Slip detection module limitations: The slip detection module does not always
capture 100% of slippage events. In some cases, it may fail to detect slippage,

88

4.9. Conclusion

resulting in errors in the state estimation. Enhancing the slip detection module to
capture a broader range of slippage events is another potential area for improve-
ment in future work.

• Violation of the assumption on the fixed location of the contact point:
To estimate the foot contact with the ground, it is typically assumed that the
contact point lies at a fixed location at the center of the foot. However, this
assumption does not fully reflect reality for many legged robots, where feet are
often spherical in shape. In such cases, the actual contact point is located on
the surface of the sphere rather than at its center. Depending on the sphere’s
radius, this discrepancy can introduce an error of up to a few centimeters (e.g.,
2 cm for the HyQ robot). Additionally, during locomotion, the spherical foot
may roll slightly, causing the contact point to shift dynamically. While the slip
detection module helps discard unreliable measurements during slip events, these
deviations in the contact point can still introduce errors in contact state estimation
and inaccuracies in the computed GRFs. Therefore, developing methods to detect
and compensate for these variations in the contact point can significantly improve
robustness.

4.9 Conclusion

This chapter presented MUSE, a state estimator designed to improve accuracy and
real-time performance in quadruped robot navigation. By integrating camera and
LiDAR odometry with foot-slip detection, MUSE fuses data from multiple sources,
including IMU and joint encoders, to provide reliable pose and motion estimates, even
in complex environments.

Ablation studies conducted on the Aliengo robot, along with benchmarking against
other state-of-the-art estimators using the FSC Dataset of ANYmal B300 platform,
validate the robustness and adaptability of MUSE across different scenarios. The results
demonstrate the estimator’s capability to handle dynamic and challenging conditions
effectively, ensuring reliable performance during locomotion and navigation.

Future work includes the improvements of the contact estimation module which
occasionally experiences inaccuracies due to high friction in the Aliengo’s joints, affecting
its dynamics, as well as developing camera and LiDAR odometry modules for dynamic
environments where moving objects, people or animals introduce additional challenges.

89

Chapter 5

Invariant State Estimation on
Lie-Groups

5.1 Preface

This chapter describes two state estimation frameworks, built upon the Invariant
Extended Kalman Filter (InEKF) and the Invariant Smoother (IS), whose design is
based on Lie and Invariant Error Theory. Developed in collaboration with the Korean
Advanced Institute of Science and Technology (KAIST), in Daejeon, South Korea,
where I conducted research during my Ph.D. secondment in 2024, the frameworks target
state estimation for quadruped robots equipped with a LiDAR, IMU, joint encoders,
force/torque sensors, and a GPS receiver. The effectiveness of the proposed frameworks
was demonstrated through real-world experiments on the Hound (Shin et al. [10]) and
Hound2 robots, developed by KAIST. The results showed that the proposed frameworks
outperformed traditional state estimation methods, and they were able to correct the
drift of the z-position, unobservable with only proprioception.

The frameworks were developed by me, based on the original implementation of the
IS and InEKF developed by Hartley et al. [36] and Yoon et al. [50], while data collection
was carried out by my colleague from KAIST, Hajun Kim. The analysis of the results
and the manuscript preparation were collaboratively conducted with Hajun, who is the
equal-contribution first author of the forthcoming publication. Supervision was provided
by João Carlos Virgolino Soares, Geoff Fink, Hae-Won Park, and Claudio Semini.

90

5.2. Introduction

Ylenia Nisticò∗, Hajun Kim∗, João Carlos Virgolino Soares, Geoff Fink, Hae-Won
Park, and Claudio Semini, “Multi-Sensor Fusion for Quadruped Robot State Esti-
mation using Invariant Filtering and Smoothing”, Under review at IEEE Robotics
and Automation Letter. ∗ Equal contribution.

5.2 Introduction

As mentioned in the previous chapters, several well-known frameworks have been devel-
oped in the field of multi-sensor state estimators for legged robots. The Pronto state
estimator (Camurri et al. [6]) utilizes an EKF to fuse data from an IMU, leg kinematics,
stereo vision, and LiDAR for pose corrections. Similarly, WALK-VIO (Lim et al. [3])
integrates IMU, camera, and joint encoder data to estimate the robot’s state, adjusting
leg kinematics dynamically based on body motion. The STEP state estimator presented
by Kim et al. [4] relies on pre-integrated foot velocity factors and stereo camera data
for pose estimation, eliminating the need for contact detection and non-slip conditions,
addressing some limitations of earlier methods, including Pronto and WALK-VIO, which
assume constant ground contact. However, STEP relies heavily on camera inputs,
which can be unreliable in featureless environments or areas with reflections, affecting
accuracy and robustness. In (Wisth et al. [2]), the VILENS state estimator combines
IMUs, kinematics, LiDAR, and cameras using factor graphs for reliable estimation even
when individual sensors fail. Cerberus (Yang et al. [121]), instead fuses data from stereo
cameras, IMU, joint encoders, and contact sensors to form a visual-inertial-leg odometry
estimator, where visual information is used to estimate the kinematic parameters. Factor
graphs are used for non-linear optimization and precise state estimation. More recently,
Leg-KILO was presented in (Ou et al. [93]). Using graph optimization, leg-KILO tightly
integrates leg odometry, lidar odometry, and loop closure.

The aforementioned studies utilized linearized dynamics dependent on the current
estimate via EKF or factor graphs, which can lead to inaccuracies in highly nonlinear
systems (Barrau and Bonnabel [122]). In contrast, Lie group-based methods naturally
accommodate nonlinearities by representing the state directly on a manifold, reducing
linearization errors and improving estimation accuracy (Sola et al. [123]). Additionally, by
leveraging the group-affine property, Lie group-based estimators such as the InEKF (Bar-
rau and Bonnabel [124]) ensure that the error dynamics remain log-linear. This property
enhances the filter’s convergence properties and stability, leading to more reliable state
estimation. Furthermore, invariant error representation allows the estimation process to

91

5.2. Introduction

be independent of the choice of coordinates, making it more robust to variations in the
robot’s pose and the environment (Barfoot [125]).

Specifically for legged robots, Lie group-based state estimation can dynamically man-
age contact points, removing or adding them as needed based on the robot’s interactions
with the environment. This dynamic handling is crucial for legged robots, which fre-
quently experience changes in contact points due to walking or running on varied terrains.
For instance, Hartley et al. [36] presented an InEKF that incorporates contact points
as part of the state, allowing the robot to adapt to changes in contact conditions and
maintain accurate state estimates.

The system proposed by Lin et al. [126], introduces a learning-based contact esti-
mator for legged robots that use a network to estimate contact events across various
terrains. Experiments demonstrate that a contact-aided InEKF that uses these estimated
contacts, generates accurate odometry trajectories.

To further enhance the robustness of state estimation when walking on difficult
terrains, in (Teng et al. [127]), the authors propose a state estimator for legged robots
in slippery environments using an InEKF. It fuses inertial and velocity measurements
from a tracking camera with leg kinematic constraints and auto-calibrates camera pose.
Furthermore, Gao et al. [128] presents an InEKF that estimates pose and velocity using
sensors such as IMUs, joint encoders, and RGB-D cameras, while the robot is walking
on a dynamic surface.

In (Santana et al. [49]) the authors developed a novel InEKF for legged robots using
only proprioceptive sensors and robust cost functions in the measurement update. Tested
on quadruped robots, their approach reduces pose drift by up to 40% over trajectories
longer than 450 meters compared to a state-of-the-art method, improving performance
in challenging terrains.

When constructing state estimators, a key decision is choosing between filtering
and smoothing approaches. Filtering methods sequentially fuse measurements without
considering the entire history of states, keeping the process efficient as all previous
states are marginalized. In contrast, smoothing methods perform batch optimization
by considering the complete state trajectory, selected keyframes of past states, or a
sliding window of previous states (Absil et al. [129]). Invariant smoothers (IS), are
estimation algorithms that utilize group-affine properties in a smoother framework. One
of the first works was proposed by Chauchat et al. [130]. The algorithm, based on a
maximum a posteriori estimator, minimizes the need for re-linearization by leveraging
the system’s group-affine properties for observation. Its effectiveness is demonstrated
through localization on a wheeled robot, equipped with gyroscopes, velocity odometry,

92

5.3. Contributions

and GNSS measurements. Also, Walsh et al. [131], tested an IS for attitude and heading
reference system with gyroscope bias in simulation.

Specifically for legged robots, there is limited literature on implementing invariant
smoothing frameworks for state estimation. One notable work is (Yoon et al. [50]), where
the authors developed and tested an invariant smoother that, similar to the approach
in (Hartley et al. [36]), incorporated foot position into the state matrix. This method
utilizes IMU measurements and leg kinematics while assuming static foot contact.

5.3 Contributions

Some of the aforementioned studies (e.g. Pronto, WALK-VIO, STEP, VILENS, Leg-
KILO) utilized linearized dynamics dependent on the current estimate via EKF or factor
graphs, which can lead to inaccuracies in highly nonlinear systems (Barrau and Bonnabel
[122]). In contrast, Lie group-based methods handle nonlinearities by representing the
state on a manifold and error dynamics in a log-linear form, which leads to improving
estimation accuracy and convergence stability (Barrau and Bonnabel [124], Chauchat
et al. [130]). This invariant error representation enables the estimation to be performed
independently of the choice of coordinates, providing more robust performance in the
robot’s pose and the environment (Barfoot [125]).

In this chapter, we develop two multi-sensor-fused state estimation frameworks for
legged robots, extending InEKF (Hartley et al. [36]) and IS (Yoon et al. [50]) using the
group-affine properties. These frameworks combine data from kinematics, IMU, LiDAR,
and GPS to mitigate position drift inherent in proprioceptive-only methods. The main
contributions of this work are as follows:

• We propose two frameworks that fuse kinematics, IMU, LiDAR odometry, and
GPS, mitigating position drift. To the best of the authors’ knowledge, this is the
first work to incorporate LiDAR odometry and GPS in an InEKF for quadruped
robots, and also the first work to incorporate exteroceptive measurements in an
IS framework. Also, to manage LiDAR’s low frequency of approximately 10 Hz,
we obtain the LiDAR odometry in a parallel thread by using the ICP registration
of [9], enabling the estimator thread to maintain fast computation times.

• Our algorithms were verified on the Hound and Hound2 robots [10] in indoor and
outdoor environments, while also providing a comparison between the performance
of the proposed methods. We also benchmark the obtained results against two
state-of-the-art LiDAR-based odometry systems [9, 11].

93

5.4. Outline

5.4 Outline

The remainder of this chapter is organized as follows. Section 5.5 provides a brief
overview of Lie theory, and state estimation on manifolds. Section 5.6 describes the
models of the robots used in this work, and the definition of the state. Sections 5.7
and 5.8 presents the formulation of the InEKF and IS frameworks. Section 5.9 briefly
described the slip rejection method used in both the state estimation frameworks. Sec-
tion 5.10 presents the experimental results, and Section 5.11 discusses the results. Fi-
nally, Section 5.12 concludes the chapter.

5.5 Theoretical Background

This section provides a brief overview of Lie theory and state estimation on manifolds,
to introduce the necessary mathematical background for understanding the proposed
state estimation frameworks. We will first focus on Lie theory, which is essential for
understanding the structure of the state space of the robot. Then, we will review
some group-affine properties, which are crucial for developing state estimation algorithms
that can handle the nonlinearities of the robot’s dynamics. For more details on the
material discussed in the following section, we refer the interested reader to (Hartley
et al. [36], Yoon et al. [50], Barrau and Bonnabel [122], Sola et al. [123], Barrau and
Bonnabel [124], Absil et al. [129], Chauchat et al. [130], Barrau [132]).

5.5.1 Lie Theory

Lie theory examines the intricate relationship between algebra and geometry. Named af-
ter the Norwegian mathematician Sophus Lie, this field primarily investigates Lie groups,
Lie algebras, and their representations, which serve as a foundation for understanding
continuous symmetries.

In this context, we consider a matrix Lie group denoted as G and its associated Lie
algebra g. When G consists of n × n matrices, its corresponding Lie algebra g also
comprises n × n matrices. For computational purposes, it is convenient to define the
map:

(·)∧ : Rdimg → g (5.1)

which transforms elements of the tangent space of G at the identity into their respective
matrix representations.

94

5.5. Theoretical Background

In robotics, much of the focus on state estimation involves determining the orienta-
tion of the robot’s body. However, representing the robot’s orientation as a 3D rotation
matrix introduces challenges, as such matrices do not reside in vector spaces but on man-
ifolds. Specifically, the rotation matrix belongs to a matrix Lie group known as the spe-
cial orthogonal group, denoted SO(3) (Dellaert et al. [133], Chirikjian [134, 135], Eade
[136]). Similarly, incorporating the robot’s position and velocity often requires the special
Euclidean group, denoted SE(3).

Thus, this section explores the properties of the matrix Lie groups SO(3) and
SEk(3), which is an extension of the SE(3) group, offering insights into the manifold
nature of these variables and their relevance to robotic systems.

Special Orthogonal Group SO(3): In most robotics applications, the robot’s
state does not reside in a simple vector space but rather on a manifold. For example,
orientation is typically represented by the Special Orthogonal Group SO(3) = {R ∈
R3×3 | det(R) = 1, R⊤R = I3}, where Ind ∈ Rnd×nd is the identity matrix.

Special Euclidean Group of k-Direct Isometries SEk(3): To simultaneously
estimate position, velocity, and orientation, one can leverage the group of k-Direct
isometries SEk(3) (Barrau and Bonnabel [124]).

Each element of SEk(3) is a (3 + k) by (3 + k) square matrices:

X ≜

 R 1p ... Np

0k,3 Ik

 , (5.2)

where R ∈ SO(3) represents the rotation matrix, and ip ∈ R3, for i = 1, 2, . . . , k, is
a vector.

A state X ∈ SEk(3) can be mapped to a corresponding vector ξ ∈ R3+3k via
logarithmic and exponential operations. This mapping provides a way to move between
matrix Lie group representations and their corresponding vector forms:

X ∈ SEk(3)→ Log(X) ∈ R3+3k, (5.3)

ξ ∈ R3+3k → Exp(ξ) ∈ SEk(3). (5.4)

The exponential map in Equation (5.4) is given by Exp(ξ) = exp(ξ∧), and it is defined
as follows:

Exp(ξ) =
exp(ϕ∧) Jl(ϕ) 1ξ · · · Jl(ϕ) kξ

0k,3 Ik

 , (5.5)

where Jl(·) denotes the left Jacobian on the SO(3) manifold. The hat operator (·)∧,
which is defined as the inverse mapping of the vee operator (·)∨, facilitating operations

95

5.5. Theoretical Background

within the Lie algebra. It is defined as

ϕ∧ =


ϕx

ϕy

ϕz


∧

=


0 −ϕz ϕy

ϕz 0 ϕx

−ϕy −ϕx 0

 . (5.6)

The adjoint matrix is defined as follows:

AdX =



R 03×3 · · · 03×3
1p∧R R · · · 03×3

...
kp∧R 03×3 · · · R

 (5.7)

5.5.2 Group-Affine Properties

The group-affine properties are essential for defining system models on matrix Lie groups
that lead to state-independent error dynamics, as shown in (Barrau and Bonnabel [124])
and (Chauchat et al. [130]). These properties arise from specific propagation and ob-
servation models designed on matrix Lie groups.

Definition 1 (Right Invariant Error). Let Xt be the true state at time t and X̄t be
the estimate in the Lie Group G. The right-invariant error between the true state Xt

and its estimate X̄t is defined as:

ηr
t ≜ X̄−1

t Xt (5.8)

and the right log-invariant error is obtained by applying the logarithm to this quantity:

ξr
t ≜ Log(ηl

t) (5.9)

Theorem 1 (Autonomous Error Dynamics (Barrau and Bonnabel [124])): A system
is called group affine if its propagation function f(·) satisfies the following condition:

d
dtXt = f(Xt),

f(XY) = Xf(Y) + f(X)Y −Xf(Idim(Y))Y,

for ∀t ≥ 0 and ∀X, Y ∈ G.

(5.10)

Equation (5.10) ensures that the log-invariant error ξr
t has a linear propagation model

96

5.5. Theoretical Background

with a constant matrix G:

g(ηr
t) = (Gξr

t)∧ +O(∥ξr
t∥2), d

dtξr
t = Gξr

t . (5.11)

This property significantly simplifies the analysis and design of nonlinear estimators on
manifolds.

Observation Model Either in filtering or smoothing, the error is updated by in-
corporating sensor measurements. If the measurements Yt adhere to specific forms
(Equation (5.12)), the linearized observation model and innovation become autonomous
(Barrau and Bonnabel [124]). The observations take the form:

Yt = X−1
t b + Vt (Right-Invariant Observation) (5.12)

Here b is a constant vector, and Vt is the observation noise.
Definition 2 (Adjoint Map): The adjoint map, fundamental to Lie group theory,

captures the non-commutative structure of a Lie group. For a matrix Lie group G with
Lie algebra g, the adjoint map Ad : G → GL(g) is defined as:

Adξ∧ = Xξ∧X−1 (5.13)

where X ∈ G and ξ ∈ g. The matrix representation of this map is denoted
as AdX ∈ Rn×n.

5.5.3 Invariant Filtering vs. Invariant Smoothing

The choice between filtering and smoothing methods is a crucial consideration when
designing state estimation algorithms. The main differences between these approaches
can be summarized as follows:

• Objective: The InEKF estimates the state at the current time step, based on
measurements available up to that point. In contrast, the IS computes a MAP
estimate of the entire trajectory by utilizing all measurements over the entire time
horizon.

• Use of measurements: The InEKF incorporates only current measurements at
each time step to update the current state estimate. On the other hand, the
IS leverages also past and future measurements to refine past state estimates,
leading to improved accuracy over the entire trajectory.

97

5.6. Robot Models and State Definitions

• Computational complexity: The InEKF is computationally more efficient than
the IS, as it processes only the current state and measurements, making it suitable
for real-time applications. The IS, however, requires batch optimization, where
the state estimation problem is formulated as a single optimization problem over
the entire trajectory. This involves simultaneously estimating all states by mini-
mizing a cost function that incorporates all measurements and system dynamics.
While this approach improves estimation accuracy, it is computationally intensive
because it involves solving large-scale optimization problems. To enable real-time
application, the IS can employ fixed-lag smoothing, which limits the optimiza-
tion to a time window that incorporates only a subset of future measurements,
balancing computational demand and estimation accuracy.

5.5.4 Summary of the Theoretical Background

This section provided a brief overview of Lie theory and state estimation on manifolds,
essential for understanding the proposed state estimation frameworks. We reviewed the
concept of Lie groups, focusing on the special orthogonal group SO(3) and on SEk(3)
the special Euclidean group of k-Direct isometries, which are crucial for representing
the orientation and position of robotic systems. We also discussed the group-affine
properties that underpin the development of state estimation algorithms on matrix Lie
groups, such as the InEKF and the IS.

With the core theory and key differences between filtering and smoothing methods
outlined, we now present the formulations of the InEKF and IS frameworks for state
estimation.

5.6 Robot Models and State Definitions

In this study, we employed the dynamic and kinematic models of the Hound (Shin et al.
[10]) and Hound2 robots. We defined the following reference frames: the Navigation
frame (N), considered an inertial frame, the Body frame (B), located at the geometric
center of the robot’s trunk, the IMU frame (I), originating from the accelerometer
within the IMU mounted on the trunk, the LiDAR frame (L), centered on the sensor
positioned atop the robot, and the GPS frame (G), situated on the GPS antenna receiver
on Hound2. The body frame’s axes are oriented as follows: forward, left, and upward.
The robots and their respective reference frames are depicted in Fig. 5.1.

Our objective is to estimate the robot’s base orientation (Rt), velocity (vt), position

98

5.6. Robot Models and State Definitions

(a) The 45 Kg Hound robot (b) The 50 Kg Hound2 robot

Figure 5.1: The quadruped robot platforms used to test the InEKF and IS. N is the
navigation frame, B is the body frame, I is the IMU frame, L is the LiDAR frame, and G is
the GPS frame.

(pt), and the position of each foot in contact with the ground (dt). Additionally, we
incorporate biases from the IMU into the state definition, specifically the gyroscope bias
(bω

t) and the accelerometer bias (ba
t). All state variables are defined in frame N ; for

clarity and to reduce notation complexity, this frame is not explicitly specified in the
formulas. Following the approach of Hartley et al. [36], we define the states in a Lie
group framework, while retaining the IMU biases in a vector space. This decision stems
from their associated equations being non-group-affine, as highlighted by Barrau and
Bonnabel [124]. Consequently, this approach results in an “imperfect” implementation
of both the InEKF and IS.

Specifically, for N contact points, the state matrices are defined as follows:

• X ∈ SEN+2(3), representing the Lie group state.

• x ∈ R6, representing the vector space biases.

Both matrices are defined as:

X ≜



Rt vt pt dt1 · · · dtN

01,3 1 0 0 · · · 0
01,3 0 1 0 · · · 0

...
01,3 0 0 0 · · · 1


and x ≜

bω
t

ba
t

 (5.14)

To simplify the derivations and enhance readability, a single contact point, dt, is

99

5.6. Robot Models and State Definitions

assumed for all subsequent equations, as the measurement models for each contact
point dti are identical.

The measurements considered in our analysis are as follows:

ω̃t, ãt, q̃t, ˙̃qt, pcℓ (5.15)

where ω̃t ∈ R3, ãt ∈ R3, q̃t ∈ R3N , ˙̃qt ∈ R3N , and pcℓ are the gyroscope,
accelerometer, joint positions, joint velocities, and LiDAR point cloud for the N -legged
robot, respectively.

5.6.1 Continuous-Time System Dynamics

The system dynamics follow the approach described in (Hartley et al. [36], Yoon et al.
[50]), and the equations are reported here for clarity. The IMU measurements consist
of the angular velocity (ω̃t) and linear acceleration (ãt). These measurements are
assumed to be corrupted by slowly varying biases (bω

t and ba
t) and zero-mean white

Gaussian sensor noise (wω and wa). This relationship is modeled as:

ω̃t = ωt + bω
t + wω and ãt = at + ba

t + wa (5.16)

These biases are represented by a parameter vector that is estimated as part of the
right-invariant InEKF state and IS state:

θt ≜

bω
t

ba
t

 ∈ R6 (5.17)

The augmented right-invariant error is then defined as:

er
t ≜ (X̄tX−1

t , θ̄t − θt) ≜ (ηr
t , ζt) (5.18)

Explicitly, the right-invariant error, ηr
t , is given by:

ηr
t =


R̄tR⊤

t v̄t − R̄tR⊤
t vt p̄t − R̄tR⊤

t pt d̄t − R̄tR⊤
t dt

01,3 1 0 0
01,3 0 1 0
01,3 0 0 1

 (5.19)

100

5.6. Robot Models and State Definitions

The parameter vector error, ζt, is defined as:

ζt =
b̄ω

t − bω
t

b̄a
t − ba

t

 ≜

ζω
t

ζa
t

 (5.20)

This formulation provides the basis for estimating both the IMU biases and the state
using the InEKF and IS.

The system dynamics integrate IMU measurements of acceleration and angular veloc-
ity, incorporating the assumption of stable foot contact, which implies zero foot velocity
during ground contact. The dynamics are expressed as follows:

d

dt
Rt = Rt(ω̃t − bω

t −wω)∧, (5.21a)
d

dt
vt = Rt(ãt − ba

t −wa) + g, (5.21b)
d

dt
pt = vt, (5.21c)

d

dt
dt = RthR(α̃t)(−wv

t), (5.21d)
d

dt
bω

t = wbω

, (5.21e)
d

dt
ba

t = wba (5.21f)

Here, g ∈ R3 is the gravity vector, and wω, wa, wc, wbω , and wba represent zero-mean
Gaussian noise associated with each process.

The deterministic system dynamics depend on both the inputs ut and the parameters
θt, and can be written as:

fut(X̄t, θ̄t) =


R̄t(ω̄t)× R̄tāt + g v̄t 03,1

01,3 0 0 0
01,3 0 0 0
01,3 0 0 0

 (5.22)

Here ω̄ ≜ ω̃− b̄ω
t ā ≜ ã− b̄a

t . These are the bias-corrected angular velocity and accel-
eration measurements (inputs). To derive the linearized error dynamics, the augmented
right-invariant error from Equation 5.20 is differentiated with respect to time:

d

dt
er

t =
 d

dt
ηr

t ,
wω

t

wa
t

 (5.23)

Applying the chain rule and a first-order approximation, ηr
t = Exp(ξt) ≈ Id + ξt

∧,

101

5.7. Invariant Extended Kalman Filter formulation

the individual terms of the invariant error dynamics are:

d

dt

(
R̄tRt

⊤
)
≈

(
R̄t(wω

t − ζω
t)

)
×

(5.24a)
d

dt

(
v̄t − R̄tR⊤

t vt
)
≈ (g)×ξ

R
t + (v̄t)×R̄t(wω

t − ζω
t) + R̄t(wa

t − ζa
t) (5.24b)

d

dt

(
p̄t − R̄tR⊤

t pt
)
≈ ξv

t + (p̄t)×R̄t(wω
t − ζω

t) (5.24c)
d

dt

(
d̄t − R̄tR⊤

t dt
)
≈ (d̄t)×R̄t(wω

t − ζω
t) + R̄thR(α̃t)wv

t (5.24d)

The augmented invariant error dynamics depend only on the estimated trajectory
through the noise and bias error, ζt. When there are no bias errors, the dynamics are
independent of the estimated trajectory.

A linear system can now be constructed from Equation 5.24:

d

dt

ξt

ζt

 = At

ξt

ζt

 +
AdX̄t 012,6

06,12 I6

 wt (5.25)

where At and AdX̄t are defined as:

At =



0 0 0 0 −R̄t 0
(g)× 0 0 0 −(v̄t)×R̄t −R̄t

0 I 0 0 −(p̄t)×R̄t 0
0 0 0 0 −(d̄t)×R̄t 0
0 0 0 0 0 0
0 0 0 0 0 0


AdX̄t =


Rt 0 0 0

(vt)×Rt Rt 0 0
(pt)×Rt 0 Rt 0

(ptct)×Rt 0 0 Rt



(5.26)
and wt is the augmented noise vector:

wt = vec(wt
ω, wa

t , 03,1, hR(α̃t)wv
t , wt

ω, wa
t) (5.27)

5.7 Invariant Extended Kalman Filter formulation

Building on the robot models, state definitions, and continuous-time system dynamics,
we now outline the formulation of the InEKF for state estimation on matrix Lie groups.

102

5.7. Invariant Extended Kalman Filter formulation

5.7.1 Prediction Step

As in (Hartley et al. [36]), the state estimate X̄t is propagated using the deterministic
system dynamics, which include the IMU biases. The covariance matrix Pt is updated
according to the Riccati equation (Maybeck [137]):

d

dt
(X̄t, θ̄t) = fut(X̄t, θ̄t, 06,1) (5.28)

d

dt
Pt = AtPt + PtA⊤

t + Q̄t (5.29)

where At is the Jacobian of the system dynamics, defined in Equation 5.26. Q̄t is the
noise covariance matrix. The noise covariance matrix, Q̄t, is given by:

Q̄t =
AdX̄t 012,6

06,12 I6

 Cov(wt)
AdX̄t 012,6

06,12 I6

⊤

(5.30)

where AdX̄t is the adjoint matrix representation, defined in Equation (5.26).

5.7.2 Right-Invariant Measurement Model

We define the right-invariant measurement model by considering the forward kinematics
of each leg, LiDAR measurements, and the GPS position.

5.7.2.1 Forward Kinematics Measurement Model

Let q̃t ∈ R3N represent the joint positions between the robot’s body and its contact
points. These encoder measurements are assumed to be corrupted by additive white
Gaussian noise, wq

t :
q̃t = qt + wq

t (5.31)

Using forward kinematics, the relative position of the contact point with respect to the
body is measured. The forward kinematics position measurement pk(q̃t) is expressed
as:

pk(q̃t) = Rt
⊤(ptc − pt) + Jp(q̃t)wq

t (5.32)

where Jp denotes the analytical Jacobian of the forward kinematics function. In ma-
trix form, this measurement has the right-invariant observation form Y = X−1 + b
(Equation (5.12)):

103

5.7. Invariant Extended Kalman Filter formulation


pk(q̃t)

0
1
−1


︸ ︷︷ ︸

Ykin

=


R⊤

t −R⊤
t vt −R⊤

t pt −R⊤
t dt

01,3 1 0 0
01,3 0 1 0
01,3 0 0 1


︸ ︷︷ ︸

X−1


03,1

0
1
−1


︸ ︷︷ ︸

bkin

+


Jp(q̃t)wq

t

0
0
0


︸ ︷︷ ︸

Vkin

(5.33)

Here Ykin is the kinematic observation vector, bkin is a constant vector, while Vkin is
the Gaussian noise vector for the observation model.

5.7.2.2 LiDAR Measurement Model

Based on (Vizzo et al. [9]), we obtain the LiDAR position from point cloud data in a
parallel thread, enabling the main estimator thread to maintain fast computation times.
Transforming the LiDAR position into the body frame B (plid), the measurement in the
right-invariant observation form is similar to Equation (5.33):


plid

0
1
0


︸ ︷︷ ︸

Ylid

=


Rt

⊤ −R⊤
t vt −R⊤

t pt −R⊤
t dt

01,3 1 0 0
01,3 0 1 0
01,3 0 0 1


︸ ︷︷ ︸

X−1


03,1

0
1
0


︸ ︷︷ ︸

blid

+


Jpℓ

wℓ
t

0
0
0


︸ ︷︷ ︸

Vlid

(5.34)

Here Ylid is the LiDAR observation vector, blid is a constant vector, while Vlid is the
Gaussian noise vector for the observation model.

5.7.2.3 GPS Measurement Model

Transforming the GPS position into the body frame B (pgps), the GPS measurement is
expressed in right-invariant observation (Equation (5.12)) form as:


pgps

0
1
0


︸ ︷︷ ︸

Ygps

=


Rt

⊤ −R⊤
t vt −R⊤

t pt −R⊤
t dt

01,3 1 0 0
01,3 0 1 0
01,3 0 0 1


︸ ︷︷ ︸

X−1


03,1

0
1
0


︸ ︷︷ ︸

bgps

+


Jpgpsw

gps
t

0
0
0


︸ ︷︷ ︸

Vgps

(5.35)

104

5.7. Invariant Extended Kalman Filter formulation

Here Ygps is the GPS observation vector, bgps is a constant vector, while Vgps is the
Gaussian noise vector for the observation model.

5.7.3 Augmented Right-Invariant Observation and Innovation

Starting from Equation (5.33), Equation (5.34), and Equation (5.35), we define an
augmented observation vector Yt = [Y⊤

kin Y⊤
lid Y⊤

gps)
⊤, and a corresponding aug-

mented constant vector: b = [b⊤
kin b⊤

lid b⊤
gps)

⊤. The right-invariant observation can
be expressed as:


Ykin

Ylid

Ygps


︸ ︷︷ ︸

Yt

=


X−1 0 0

0 X−1 0
0 0 X−1


︸ ︷︷ ︸

Xaug−1


bkin

blid

bgps


︸ ︷︷ ︸

b

+


Vkin

Vlid

Vgps


︸ ︷︷ ︸

V

(5.36)

where Xaug
−1 is the augmented inverse state matrix.

The right-invariant innovation z, defined as z = [z⊤
kin z⊤

lid z⊤
gps]

⊤, is then:


zkin

zlid

zgps


︸ ︷︷ ︸

z

=


X 0 0
0 X 0
0 0 X


︸ ︷︷ ︸

Xaug


Ykin

Ylid

Ygps


︸ ︷︷ ︸

Y

−


bkin

blid

bgps


︸ ︷︷ ︸

b

(5.37)

where Xaug is the augmented state matrix, where the state matrix X is on the diagonal.

5.7.3.1 Update Equations

The linear update equations follow the approach in (Hartley et al. [36]) and are given
by:

(
X̄+

t ,θ+
t

)
=

(
exp

(
Kξ

tΠX̄tYt
)

X̄t, θ̄t + Kζ
tΠX̄tYt

)
(5.38a)

P+
t = (I−KtHt) Pt(I−KtHt)⊤ + KtN̄tKt

⊤ (5.38b)

where Kξ
t and Kζ

t are the Kalman gain matrices for the state and bias estimates, com-
puted as:

St = HtPtHt
⊤ + N̄t , Kt =

Kξ
t

Kζ
t

 = PtHt
⊤S−1

t (5.39)

105

5.7. Invariant Extended Kalman Filter formulation

with the following output and noise matrices:

H = [H⊤
kin H⊤

lid H⊤
gps]

⊤ , N =


Nkin 0 0

0 Nlid 0
0 0 Ngps

 (5.40a)

The individual terms are defined as:

Hkin =
[
03,3 03,3 −I I3,1

]
, Nkin = RtJp(q̃t)Σ(wq

t)J⊤
p (q̃t)Rt

⊤ (5.41a)

Hlid =
[
03,3 03,3 −I 03,1

]
, Nlid = RtJplidΣ(wlid

t)J⊤
plid

Rt
⊤ (5.41b)

Hgps =
[
03,3 03,3 −I 03,1

]
, Ngps = RtJpgpsΣ(wgps

t)J⊤
pgpsRt

⊤ (5.41c)

Here Σ(wq
t), Σ(wlid

t), and Σ(wgps
t) are the covariance matrices of the joint position,

LiDAR position and GPS position noise, respectively.

5.7.4 Addition and Removal of Contact Points

As described in (Hartley et al. [36]), the addition and removal of contact points are
essential for handling the discrete events where contact points are created or broken
as the robot navigates its environment. We report the method here for completeness.
These operations require dynamically updating the observer’s state representation.

5.7.4.1 Removing Contact Points

To remove a contact point, the corresponding state variable is marginalized by eliminating
its associated row and column from the matrix Lie group. The corresponding elements in
the covariance matrix are also removed. This is achieved through a linear transformation.
For instance, transitioning from one contact point to zero contact points results in the
reduced covariance:


ξR

t

ξv
t

ξp
t

 =


I 0 0 0
0 I 0 0
0 0 I 0



ξR

t

ξv
t

ξp
t

ξd
t

 (5.42)

which implies:
ξnew

t ≜ Mξt and Pt
new = MPtM⊤ (5.43)

where M is the transformation matrix.

106

5.7. Invariant Extended Kalman Filter formulation

5.7.4.2 Adding Contact Points

When the robot establishes a new contact, the state and covariance matrices must be
augmented. Special care is required to initialize the mean and covariance for the new
contact point. For example, when transitioning from zero to one contact point, the
initial mean is computed using the forward kinematics relation:

d̄t = p̄t + R̄thp(α̃t) (5.44)

where hp(α̃t) represents the forward kinematics transformation.
To compute the new covariance, the right-invariant error is analyzed:

ηd
t = d̄t − R̄tR⊤

t dt

= p̄t + R̄thp(α̃t) + R̄tRt
⊤dt

= p̄t + R̄thp(α̃t) + R̄tRt
⊤p̄t + R̄tRt

⊤hp(α̃t −wt
α)

≈ ηp
t + R̄tJp(α̃t)wt

α

(5.45)

where Jp(α̃t) is the Jacobian of the forward kinematics. This leads to an approximate
relation for the contact error:

ξd
t ≈ ξp

t + R̄tJp(α̃t)wt
α (5.46)

The augmented covariance is computed using a linear map:

ξR

t

ξv
t

ξp
t

ξd
t

 =


I 0 0
0 I 0
0 0 I
0 0 I



ξR

t

ξv
t

ξp
t

 +


0
0
0

R̄tJp(α̃t)

 wt
α (5.47)

This implies:

ξnew
t ≜ Ftξt + Gtwt

α (5.48a)
Pt

new = FtPtFt
⊤ + GtCov(wt

α)Gt
⊤ (5.48b)

where: Ft is the augmentation matrix, while Gt is the noise matrix, which depends on
the error variable choice.

Remark: The above method for handling the addition and removal of contact points
is reported here for completeness and follows the approach outlined in (Hartley et al.

107

5.8. Invariant Smoother formulation

[36]). The augmentation matrix Ft and noise matrix Gt depend on the system dynamics
and must be carefully designed.

5.7.5 Summary of the Invariant Extended Kalman Filter

In this section, we have presented the formulation of a Right Invariant Extended Kalman
Filter (R-InEKF) for legged robots. This filter is classified as “imperfect” because it
estimates IMU biases from the gyroscope and accelerometer, which cannot satisfy group
affine properties (Barrau [132]).

The filter builds upon the work of (Hartley et al. [36]) and is designed to handle
intermittent contacts, which are created and broken as the robot navigates through its
environment. Additionally, we incorporate global position measurements from LiDAR-
odometry and GPS into its measurement model of the filter, enabling robust and accurate
state estimation even in challenging conditions.

5.8 Invariant Smoother formulation

Unlike filtering approaches, which estimate the current state of the system, smooth-
ing methods aim to recover the maximum a posteriori (MAP) estimate of the entire
trajectory, given a set of measurements Z. The problem is formulated as:

X∗
0:n, x∗

0:n = arg max
X0:n,x0:n

p(X0:n, x0:n | Z0:n)

= arg max
X0:n,x0:n

p(X0:n, x0:n)p(Z0:n | X0:n, x0:n).
(5.49)

Based on the state definition and sensor measurements, following (Yoon et al. [50]),
the MAP problem is decomposed into four components: Prior, Propagation, Observa-
tion, and Loop closure distributions. This leads to the following formulation:

X∗
0:n, x∗

0:n = arg max
X0:n,x0:n

p(X0, x0)︸ ︷︷ ︸
Prior

n−1∏
i=0

p(Xi+1, xi+1 | Xi, xi, Zi)︸ ︷︷ ︸
Propagation

n∏
i=0

p(Zi | Xi, xi)︸ ︷︷ ︸
Observation

∏
a,b∈L

p(Za:b | Xa, xa, Xb, xb)︸ ︷︷ ︸
Loop

(5.50)

where Zi is the sensor observation at timestep i, and L is the set of long-term ob-
servations, with a and b representing the start and end timesteps of each loop closure
constraint. The Prior distribution represents the initial state distribution, the Prop-

108

5.8. Invariant Smoother formulation

agation is the state transition distribution, the Observation is the sensor observation
distribution, and the Loop is a long-term observation distribution.

The MAP problem can be rewritten as a nonlinear least squares problem:

X∗
0:n, x∗

0:n = arg min
X0:n,x0:n

∥rPri∥2
ΣPri︸ ︷︷ ︸

Prior

+
n−1∑
i=0
∥rPropi∥

2
ΣPropi︸ ︷︷ ︸

Propagation

+
n∑

i=0
∥rObsi∥

2
ΣObsi︸ ︷︷ ︸

Observation

+
∑

a,b∈L
∥rLoopa,b∥

2
ΣLoopa,b︸ ︷︷ ︸

Loop closure

(5.51)

where r and Σ denote the residual functions and covariance matrices for each
distribution.

To solve the nonlinear problem, a perturbation e0:n is introduced at the current
operating point, leading to the following optimization:

e∗
0:n = arg min

e0:n
∥r̄Pri − JPrie0:n∥2

ΣPri
+

n−1∑
i=0
∥r̄Propi − JPropie0:n∥2

ΣPropi

+
n∑

i=0
∥r̄Obsi − JObsie0:n∥2

ΣObsi
+

∑
a,b∈L

∥r̄Loopa,b − JLoopa,be0:n∥2
ΣLoopa,b

(5.52)

where r̄ are the residuals, and J are the Jacobians of the residual functions. At each
iteration, the state is updated as:

X∗
i ⇐ Exp(ξ∗

i)X̄i and x∗
i ← x̄i + ζ∗

i (5.53)

where ξ∗ is the perturbation of the state on the manifold, ζ∗ is the perturbation of the
bias, and X̄i is the current estimate of the manifold variable at iteration i.

5.8.1 Derivation of the Cost Functions

In this section, we derive the cost functions for the Prior, Propagation, Observation,
and Loop Closure terms in the smoothing framework, based on the formulation in (Yoon
et al. [50]).

5.8.1.1 Prior Cost Function

The prior cost captures the initial belief about the system state before incorporating
sensor observations. This belief accounts for Gaussian noise in both the manifold and

109

5.8. Invariant Smoother formulation

vector components of the state. The state and its perturbations are represented by X0,
wPri,M, and wPri,v, where:

wPri =
wPri,M

wPri,v

 (5.54)

The initial state is perturbed by noise and is described as follows:

[
I5 05,1

]
︸ ︷︷ ︸

MPri

X0
[
I5 05,1

]⊤
=


R0 v0 p0

01,3 1 0
01,3 0 1

 = Exp(wPri,M)XPri (5.55a)

x0 = xPri + wPri,v (5.55b)

where XPri is the prior state belief, xPri is the prior belief of the bias, while MPri is an
auxiliary block operator matrix to map X0 ∈ R6×6 to R5×5. The matrix MPri excludes
d0 from the prior cost, as it is initialized through the forward kinematics relation in the
observation factor at the first timestep.

Using the exponential map, the prior belief about the manifold can be written as:

MPri(Exp(ξ0)X̄0)MPri
⊤ = Exp(wPri,M)XPri (5.56)

After applying MPri twice, we derive the linear relation:

Exp(M0ξ0)(MPri, X̄0, MPri
⊤) = Exp(wPri,M), XPri (5.57)

where M0 = [I↛ 09,3]. Rearranging this equation and introducing the distance be-
tween the prior belief and the current operating point, ξPri, we obtain:

Exp(M0ξ0)Exp(−ξPri) = Exp(wPri,M) (5.58)

Finally, applying the logarithmic map and the Baker-Campbell-Hausdorff (BCH) formula
as explained in (Yoon et al. [50]) , the final expression for the prior cost on the manifold
is:

wPri,M = M0ξ0 − ξPri (5.59)

Similarly for the bias, the prior belief is represented as:

wPri,v = ζ0 − ζPri (5.60)

110

5.8. Invariant Smoother formulation

where ζPri = xPri − x̄0.
Finally, the following key components are derived: the residual vector, Jacobian

matrix, and covariance matrix for the prior cost, which captures the deviation between
the prior and current states, the sensitivity of the residual to state changes, and the
associated uncertainty, respectively. Finally, the residual function rPri, the Jacobian
JPri, and the corresponding covariance matrix ΣPri for the Prior cost are:

rPri = −
[
Log(XPri(MPriX̄0MPri

⊤)−1), (xPri − x̄0)⊤
]⊤

(5.61a)

JPri =
M0 09,6

06,9 I6

 (5.61b)

ΣPri = Cov(wPri) (5.61c)

5.8.2 Propagation Cost Function

The “Propagation” cost models the evolution of the system state from the previous
timestep to the current timestep, as dictated by the system dynamics. This cost is derived
from the continuous-time system dynamics equations presented in Equation (5.21).

The noise-free propagation functions for the manifold state variable and vector space
state variable are denoted as fM(·) and fv(·), respectively. The subscript M refers to
the dynamics of the SE3(3) manifold, while v refers to the dynamics in R6. The explicit
definitions are:

fM(Xt) =
Rt(ω̃t − bt

ω)∧ Rt(ãt − ba
t) + g vt 03×1

03×3 I3

 (5.62a)

fv(xt) =
03×1

03×1

 (5.62b)

The continuous-time log-linear error propagation equation derived by Hartley et al. [36]
and presented in Equation (5.25), and Section 5.7 is discretized using a forward Euler
method. The discrete propagation functions are:

fd
M(Xi) =

RiExp((ω̃i − bω
i)∆t) vd

i pd
i di

03×3 I3×3

 (5.63a)

fd
v (xi) =

bω
i

ba
i

 (5.63b)

111

5.8. Invariant Smoother formulation

where

vd
i = vi + Ri(ãi−bi

i)∆t + g∆t , pd
i = pi + vi∆t + 1

2Ri(ãi−ba
i)(∆t)2 + 1

2g(∆t)2

(5.64)
The perturbation terms for the manifold and vector space states are defined as:

ξfi+1 = Log(Xi+1fd
M(X̄i)) and ζf

i+1 = xi+1 − fd
v (x̄i) (5.65)

Using forward Euler discretization, the perturbed propagation equation is:
ξfi+1

ζf
i+1

 = (I18 + Ai∆t)
ξi
ζi

 +AdX̄i
012,6

06,12 I⋪

 ∆t wd
Prop (5.66)

where Ai and AdX̄i
are defined in Equation (5.26), ∆t is the discretizing time interval,

while wd
Prop = [(wω)⊤, (wa)⊤, (wa∆t)⊤, (wc)⊤, (wbω)⊤

, (wba)⊤]
⊤

.
The left-hand side of Equation (5.66) is further expanded to explicitly include the per-

turbation variables [ξ⊤
i+1, ζ⊤

i+1]. Neglecting higher-order terms of ΛM in the Jacobian,
the residuals can be approximated as:

ξfi+1

ζf
i+1

 =
Log(Xi+1fd

M(X̄i))
xi+1 − fd

v (x̄i)

 =
Log(Xi+1X̄−1

i+1X̄i+1fd
M(X̄i)

−1)
xi+1 − x̄i+1 + x̄i+1 − fd

v (x̄s)


=

Log(Exp(ξi+1)Exp(−ΛM))
ζi+1 −Λv

 ≈
ξi+1

ζi+1

−Λ

(5.67)

where Λ = [Λ⊤
M ,Λ⊤

v]⊤ represents the perturbation terms of the state and bias variables.
The residual function rPropi , the Jacobian matrices JPropi+1 and JPropi , and the

corresponding covariance matrix ΣPropi for the Propagation cost are:

rPropi = −
Log(fd

M(X̄i)X̄−1
i+1)

fd
v (x̄i)− x̄i+1

 , JPropi = −(I18 + Ai ∆t) , JPropi+1 = I⊮↚

(5.68a)

ΣPropi = APropiCov(wd
Prop)APropi

⊤ where APropi =
AdX̄i

012,6

06,12 I6

 ∆t (5.68b)

112

5.8. Invariant Smoother formulation

5.8.3 Observation Cost Function

The second main contribution of this chapter, together with the formulation of the
augmented right-invariant measurement model for the InEKF (Section 5.7.3), is the
formulation of an invariant smoother, where the observation model incorporates not
only the foot positions derived from leg kinematics but also global position data from
LiDAR and GPS. The observation leverages these global positions to correct the robot’s
state by comparing its position with known global reference points.

To derive the observation cost function for kinematics, we first express the right-
invariant observation in matrix form, as shown in Equation (5.33). From this, we com-
pute the residual function, which is then used to correct the robot’s position. The residual
function rkin, along with the corresponding Jacobian Jkin and covariance matrix Σkin

are defined as follows:
rkin = XYkin − bkin (5.69)

Jkin = [bkin
⊙ 06,6] (5.70)

Σkin = XΣ(wq
t)X⊤ (5.71)

where the definition of the ⊙ operator is:

ξ⊙ =



03,3 03,3 · · · 03,3

ξ∧
1 03,3 · · · 03,3
...

ξ∧
k 03,3 · · · 03,3

 (5.72)

Next, we express the LiDAR measurement model in a right-invariant form, similar
to Equation (5.34), using plid, which represents the LiDAR position in the body frame
B. From this, we compute the residual function for the LiDAR observation, which is
subsequently used to correct the robot’s position. The residual rlid, the Jacobian Jlid,
and the covariance matrix Σlid are defined as follows:

rlid = XYlid − blid (5.73a)
Jlid = [blid

⊙ 06,6] (5.73b)
Σlid = XΣlid(wlid

t)X⊤ (5.73c)

In this case, the global orientation provided by the LiDAR odometry is excluded from the
observation model because it cannot be expressed in a right-invariant form that respects
the smoother structure on SEk(3). Specifically, it is not possible to relate the rotation

113

5.8. Invariant Smoother formulation

data from LiDAR odometry in the required form Y = X−1b of Equation (5.12), which is
essential for maintaining the mathematical consistency of the right-invariant formulation.
Incorporating the LiDAR orientation into the observation model would probably necessi-
tate additional propagation factors to account for LiDAR measurements. However, this
approach should be carefully investigated because LiDAR orientation data represents
external measurements, which do not naturally fit into the smoother’s internal structure
on SEk(3). Introducing such propagation factors could disrupt the cleaner separation
between the dynamics and observation models, leading to increased computational com-
plexity and potential inaccuracies in the smoother formulation. As a result, only the
global position measurements from LiDAR odometry are included in our formulation
of the observation model, ensuring that the right-invariant structure of the smoother
remains consistent and computationally efficient.

Finally, the GPS position residual is obtained from Equation (5.35), following the
same approach as for the kinematic observation and LiDAR observation. The residual
rgps, Jacobian Jgps, and covariance matrix Σgps are given by:

rgps = XYgps − bgps (5.74)

Jgps = [bgps
⊙ 06,6] (5.75)

Σgps = XΣgps(wgps
t)X⊤ (5.76)

5.8.4 Contact Loop Closure Cost Function

One of the advantages of the smoother framework is its ability to access states within
the history window. This enables the formulation of measurement models that relate
states across distant timesteps, which is not possible in filtering frameworks that only
handle adjacent states. Leveraging this capability, the IS uses the Contact Loop (CL)
method previously proposed by Yoon et al. [50], which enforces that foot positions remain
consistent over multiple timesteps when no slip is detected. This is expressed as:

114

5.8. Invariant Smoother formulation

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Timestep

Contact-Loop Method Representation
vfoot

|afoot|

v (Velocity Threshold)

a (Acceleration Threshold)

Marginalized Prior Cost

Observation Cost

Propagation Cost (Dynamic Span)

Contact Loop Cost

Figure 5.2: Illustration of the contact-loop method: foot velocity vfoot and foot accelera-
tion vfoot are plotted against time steps. Then thresholds for both velocity αv and acceleration
α : a to identify static and dynamic (i.e. slippage) contact spans. Then factors for different
costs are represented: Marginalized prior cost (green markers), Observation cost (red markers),
Propagation cost (blue for static spans, purple for dynamic spans), then Contact loop cost
(orange connecting line for long-term constraints). Picture adapted from (Yoon et al. [50]).

rLoopa,b = [I3 03,3]︸ ︷︷ ︸
MLoop

(X̄a − X̄b)


03,1

0
0
1


︸ ︷︷ ︸

s

= d̄a − d̄b (5.77a)

JLoopa = MLoop([s⊙ 06,6]) (5.77b)
JLoopb = −MLoop([s⊙ 06,6]) (5.77c)

ΣLoopa,b = Σcl∆t (5.77d)

where Σcl is the covariance matrix, representing the confidence in the CL. Subscripts a

and b refer to the start and end timesteps of the long-term observation. The residual
function rLoopa,b , the Jacobian matrices JLoopa and JLoopb , and the covariance matrix
ΣLoopa,b for the CL are defined as shown above.

A loop is connected over two distant timesteps if

• None of the absolute values of the estimated foot velocities during the time span
exceed a certain threshold αv.

• None of the absolute values of the foot accelerations exceed the threshold āfoot.

A graphical representation of the CL model is provided in Fig. 5.2.

115

5.9. Slip Rejection Method

5.8.5 Summary of the Invariant Smoother

The IS extends the capabilities of the InEKF by incorporating a smoothing mechanism.
This mechanism leverages the history of the robot’s state to improve the accuracy of the
pose estimation. The IS is designed to handle the complex dynamics of legged robots,
which are subject to non-linearities and uncertainties due to the interaction with the
environment. The smoother, built upon the work of Yoon et al. [50] is formulated in
a right-invariant form, and utilizes a set of cost functions that capture the dynamics
of the system, the observations from the sensors, and the constraints imposed by the
contact loop. These cost functions are used to optimize the robot’s state estimate
by minimizing the error between the predicted and observed states. The observation
component plays a critical role by incorporating sensor data to correct the robot’s pose.
Kinematic measurements relate body pose to foot positions, while LiDAR provides global
positional data in the body frame, and GPS offers absolute global positions for outdoor
scenarios. These observations enable the smoother to correct drift and improve global
position accuracy, making it robust to challenging environments and sensor variability.

5.9 Slip Rejection Method

The assumption of static foot contact is often violated in real-world scenarios, particularly
when the robot operates on unstable or slippery surfaces. To address this issue, both
estimators in this work are designed to reject slippage by employing the Slip Rejection
(SR) method from (Kim et al. [47]). The estimated foot velocity is computed as:

vfoot = vi + RiJp(q)q̇ + Ri(ω − bω)∧fk(q) (5.78)

where q ∈ R3, q̇ ∈ R3, and fk(q) are the joint position, joint velocity, and forward
kinematics, respectively. The SR mechanism is triggered when the estimated foot
velocity exceeds a predefined threshold. When slippage is detected, the uncertainty
associated with the static contact foot assumption is increased to account for the
potential deviation from the ideal contact model.

The smoother algorithm offers an additional improvement opportunity. Since foot
velocity can be recalculated over a history window, the stability of the contact can be
reassessed dynamically. This allows for adaptive modification of the covariance matrix,
reflecting the updated contact stability estimation. Consequently, the formulation of the
cost function can be adjusted, potentially reformulating the entire estimation process for
enhanced accuracy.

116

5.9. Slip Rejection Method

The graphical representation in Fig. 5.3 provides an overview of the inputs and
methods used in the two state estimation frameworks, highlighting the common inputs
and key components (or "blocks") of both the InEKF and IS.

LiDAR

GPS

IMU

Joint Encoders

InEKF

Point Cloud

Position

Angular rate
Acceleration

Joint Position
Joint Velocity

Scan Deskewing
ICP Registration

Point Cloud Subsampling

Propagation

Observation

Contact
Estimator

Contact
Loop

Contact Loop
Detector

Legged Robot Specific Method

Slip
Rejection

LiDAR thread

IS
Prior /

Marginalization

Figure 5.3: Structure of the InEKF and IS: on the left there are the sensor measurements
(LiDAR point cloud, GPS position, IMU angular velocity and linear acceleration, and finally
joint positions and velocity). LiDAR point cloud is externally processed to obtain a position
measurement, that is used, together with the GPS position and leg-kinematics, to obtain the
observation cost. The “Legged robot specific method” block includes contact estimation, the
slip rejection method described in Section 5.9, and the contact loop detector of Section 5.8.4.
The dotted block indicates that Propagation and Observation are common to both estimation
frameworks. In fact, the InEKF also takes these two steps. The IS additionally has Prior,
Marginalization (Leutenegger et al. [30]), and contact loop blocks.

117

5.10. Experimental Results

5.10 Experimental Results

In this section, we present the experimental results of the InEKF and IS algorithms, using
sensor data collected from the Hound and Hound2 robotic platforms. These experiments
were conducted in two distinct scenarios: a controlled lab indoor environment and a
variable outdoor environment. All results are derived from offline processing and analysis
of the collected sensor data (Sections 5.10.1 and 5.10.2).

The evaluation focuses on comparing the estimated robot pose against ground truth
data. For the indoor experiment, the ground truth pose measurements were provided
by a Vicon motion capture system, while for the outdoor experiment, ground truth was
obtained from a Holybro RTK GPS system with a helical antenna (Holybro [138]), which
delivers centimeter-level precision under open-sky conditions.

The performance of the proposed algorithms was quantified using the two standard
metrics already used in Chapter 4: the mean Absolute Trajectory Error (ATE), which
assesses global pose estimation accuracy, and the mean Relative Pose Error (RPE),
which evaluates local consistency in pose estimation. Additionally, to contextualize our
results, we benchmarked InEKF and IS against two state-of-the-art methods. For indoor
experiments, we compared them to FAST-LIO (Xu and Zhang [11]), a tightly coupled
LiDAR-Inertial Odometry system that integrates LiDAR data and IMU measurements
for robust pose estimation. For outdoor experiments, we used KISS-ICP (Vizzo et al.
[9]) as the baseline. KISS-ICP is a LiDAR-only odometry system that demonstrated high
accuracy (higher than FAST-LIO) in our specific outdoor test environments, making it
an appropriate benchmark for this setting.

An analysis of the obtained results in terms of accuracy and time execution is done
in Section 5.11.

5.10.1 Indoor Experiment

The 45 kg quadruped robot Hound, equipped with a Livox MID360 LiDAR sensor (Livox
[139]), performed walking tests in an indoor environment, designed to simulate real-world
uneven terrain, as illustrated in Fig. 5.4. The testing area consisted of a platform built
using wooden blocks and steps of varying heights, specifically arranged to challenge the
robot’s stability and mobility. These variations required the robot to actively adjust its
stepping to navigate the uneven block structure effectively.

The varying heights were a critical feature of this experiment, emphasizing the im-
portance of incorporating exteroceptive sensors, such as LiDAR, to address positional

118

5.10. Experimental Results

Figure 5.4: Screenshots of the Indoor Experiment with the Hound robot

drift along the z-axis. Positional drift along this axis is inherently unobservable when
relying solely on proprioceptive measurements, as previously analyzed by Bloesch et al.
[31]. This experiment demonstrated how external sensor data can mitigate such drift,
enabling more accurate pose estimation in challenging conditions.

As shown in Fig. 5.5, the integration of LiDAR measurements substantially reduced
drift in the z-position. The quantitative improvements are further supported by the mean
error values summarized in Tab. 5.1. In these results, the proposed algorithms, leveraging
proprioceptive and exteroceptive data, are labeled as InEKF and IS. By contrast, their
proprioceptive-only versions, without LiDAR input, are denoted as P-InEKF and P-IS.

z

Figure 5.5: Indoor experiment: Comparison between Ground Truth (VICON) and position
estimates obtained using proprioceptive-only InEKF (P-InEKF), InEKF, proprioceptive-only IS
(P-IS), and IS. The results zoomed on the right demonstrate a clear reduction in z-axis drift
when LiDAR measurements are incorporated.

Table 5.1: Indoor Experiment with Hound: ATE and RPE over 1 m

Indoor InEKF P-InEKF IS P-IS FAST-LIO
ATE [m] 0.18 0.25 0.12 0.23 0.50
RPE [m] 0.08 0.09 0.07 0.08 0.21

119

5.11. Discussion

5.10.2 Outdoor Experiment

In this section, we present the results of outdoor experiments conducted to evaluate and
compare the performance of the proposed frameworks. The experiments were performed
with the 50 kg Hound2 quadruped robot, equipped with a Velodyne VLP16 LiDAR sen-
sor (Ouster [141]) and a Holybro RTK GPS system featuring a helical antenna (Holybro
[138]). The robot navigated an outdoor environment along the path depicted in Fig. 5.6b
and is shown in operation in Fig. 5.6a.

To assess the frameworks’ ability to reduce long-term drift and maintain robustness
in outdoor environments, the robot traversed a 300-meter path. The experiment was
designed as a closed route, with the robot returning to its starting point. The trajectory
data and analysis results are presented in Fig. 5.7 and summarized in Tab. 5.2.

The results demonstrated that the inclusion of exteroceptive measurements, such as
LiDAR and GPS, significantly reduced long-term drift compared to proprioceptive-only
solutions. This improvement is evident in the z-axis drift reduction and the mean error
values reported in Tab. 5.2. The proposed frameworks, combining both proprioceptive
and exteroceptive data, are labeled as InEKF and IS, while their proprioceptive-only
counterparts are denoted as P-InEKF and P-IS. For a more detailed analysis, we also
evaluated the performance of the frameworks using only LiDAR as the exteroceptive
measurement, excluding GPS data. These configurations are labeled as L-InEKF and
L-IS in Tab. 5.2. To benchmark their performance, we compared the results against KISS-
ICP, a state-of-the-art LiDAR-only odometry algorithm. The results indicated that even
when GPS was excluded, the proposed frameworks (L-InEKF and L-IS) outperformed
KISS-ICP, demonstrating the added value of integrating leg-kinematics data into state
estimation for legged robots.

Table 5.2: Outdoor Experiment with Hound2: ATE and RPE over 1 m

Outdoor InEKF P-InEKF IS P-IS L-InEKF L-IS KISS-ICP
ATE [m] 0.17 6.57 0.15 6.34 1.68 1.37 2.15
RPE [m] 0.07 0.10 0.06 0.09 0.09 0.08 0.13

5.11 Discussion

In this chapter, we proposed two novel methods for robot pose estimation that combine
the strengths of filter-based and smoother-based approaches with the invariance prop-

120

5.11. Discussion

(a) Screenshots of the Outdoor Experiment with the Hound2 robot.

(b) Top view of the path walked by the Hound2 robot during the outdoor
experiment. The original picture is obtained with Google Earth (Google
[140])

Figure 5.6: Outdoor Experiment with the Hound2 robot: each letter indicates the position
of the robot on the traversed path.

121

5.11. Discussion

z

Figure 5.7: Outdoor experiment Ground Truth (GPS) vs. position estimated using
proprioceptive-only InEKF (P-InEKF), InEKF, proprioceptive-only IS (P-IS), and IS. The results
clearly show the improvement in the z-axis drift when using LiDAR and GPS measurements.

erties of the SEk(3) manifold. The proposed methods, InEKF and IS, were validated
through experiments on two quadruped robots, Hound and Hound2, in both controlled
indoor and realistic outdoor environments.

The experimental results demonstrated that the proposed methods consistently out-
performed state-of-the-art algorithms such as FAST-LIO and KISS-ICP. Both InEKF
and IS effectively corrected positional drift along the z-axis in indoor and outdoor sce-
narios, highlighting their robustness in managing vertical displacement errors. In the
outdoor experiments, the LiDAR-only versions of the proposed methods exhibited re-
duced accuracy compared to the versions that incorporated GPS data. This discrepancy
is expected, as outdoor LiDAR odometry can be affected by challenges such as dynamic
obstacles, sparse or unreliable features, and environmental complexity. Integrating GPS
data was critical for improving pose estimation in such cases. Despite this limitation, the
LiDAR-only configurations of InEKF and IS still outperformed the benchmark methods,
demonstrating the efficacy of the proposed frameworks.

5.11.1 Considerations about time execution

In all tests, the IS algorithm achieved better positional accuracy than InEKF. This ad-
vantage is likely due to IS’s ability to optimize pose estimation by leveraging both past
and current observations within a specified time window. However, the InEKF provided
comparable accuracy while requiring significantly less computational power, making it
highly suitable for real-time applications.

During the experiments, the IS algorithm employed a time window of 15 frames to
ensure all relevant updates from LiDAR and GPS data were captured. While this larger
window size improved positional accuracy, it increased computation time.

122

5.11. Discussion

0 5 10 15
Window Size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
ea

n
o
f
C
o
m

p
u
ta

ti
o
n

T
im

e
[m

s]

(a) Mean of Computation Time with increasing
Window Size (WS) (from 1 to 15).

(b) Comparison of average computation times for the proposed frame-
works.

Figure 5.8: Top: Mean of the computation time of the IS, when increasing the WS. Bottom:
Comparison of average computation times for three variants of the invariant smoothing esti-
mator (IS, L-IS, P-IS) and their InEKF-based counterparts (InEKF, L-InEKF, P-InEKF) across
different WS (1, 5, 10, and 15). Each bar represents the mean computation time (in millisec-
onds), with error bars indicating one standard deviation. The results show how increasing the
window size affects the computational load of the IS.

• IS Algorithm (window size of 15): 4.5 milliseconds per iteration on average on a
laptop with an Intel Core vPro Essential i7 processor.

• InEKF Algorithm: 0.06 milliseconds per iteration on the same machine

The execution time of the InEKF is consistent with the results reported for MUSE
during online experiments, where the state estimator provided real-time feedback to the
controller (Section 4.6.8).

To assess computational scalability, the IS algorithm was also tested with reduced
window sizes. In particular, a comparison of the computation time of the IS with a
window size of 1, 5, 10, 15 and the InEKF is given in Fig. 5.8b, where the plot shows
the mean distribution of computation times and their standard deviation. Fig. 5.8a,
instead shows how the average of the computation time increases when the WS of the
IS increases from 1 to 15. In the configuration with WS 1 - which hence exploits the

123

5.11. Discussion

same measurements correction as the InEKF - the IS algorithm achieved an execution
time of 0.18 milliseconds per iteration but with slightly reduced positional accuracy,
giving results that are comparable to those obtained with the InEKF. For instance, in
the indoor experiment, The ATE and RPE values for a WS of 1, 5, 10, and 15, and the
ATE and RPE values for the InEKF are in Tab. 5.3.

Table 5.3: ATE and RPE for IS with different WS and for the InEKF

IS IS IS IS InEKF
WS:1 WS:5 WS:10 WS:15

ATE [m] 0.14 0.13 0.13 0.12 0.18
RPE [m] 0.08 0.08 0.07 0.07 0.08

From Tab. 5.3, it is evident that the IS is more accurate than the InEKF, even with
a WS of 1. However, in this case, the computation time for the IS with a WS of 1
remains higher than that of the InEKF (0.18 ms vs 0.06 ms, respectively). Nevertheless,
the results of both the IS and the InEKF are still comparable overall. These results
highlight the trade-off between computational efficiency and accuracy. The comparable
performance in terms of accuracy of IS and InEKF demonstrates that InEKF is particularly
well-suited for real-time applications requiring low-latency pose estimation. Meanwhile,
the full-window IS configuration, with its higher computational demand, is better suited
in offline applications where precision is critical, such as detailed mapping or high-fidelity
localization tasks.

5.11.2 Limitations

While the incorporation of LiDAR greatly enhanced z-axis performance, our implementa-
tion did not include orientation correction due to the challenges related to the incorpora-
tion of the rotation in the Euclidean measurement space, while maintaining an invariant
structure. This omission represents a limitation of the current approach and suggests an
area for future research, which will aim to address this limitation and, additionally, ex-
plore methods for integrating orientation correction in invariant frameworks to enhance
overall pose estimation accuracy.

Another limitation arises when GPS data is unavailable or unreliable (e.g. indoor or
in case of cloudy and overcast skies). In such cases, the proposed method relies solely
on LiDAR and leg-kinematics data to correct drift. However:

• Drift cannot be corrected with leg-kinematics alone.

124

5.12. Conclusion

• LiDAR odometry is subject to limitations in certain environments, such as feature-
sparse areas or dynamic scenes.

To improve robustness and accuracy in such scenarios, incorporating additional sensor
modalities, such as visual odometry, could enhance the proposed method’s effectiveness.

5.12 Conclusion

In this chapter, we introduced two novel methods for robot pose estimation that
leverage the advantages of the invariance properties of the SEk(3) manifold. The
proposed methods were evaluated on two quadruped robots, Hound and Hound2, in
both indoor and outdoor environments. The results demonstrated that the methods
outperformed state-of-the-art algorithms such as FAST-LIO and KISS-ICP.

Notably, both the InEKF and IS were able to correct drift along the z-axis, as ex-
pected. However, in the outdoor experiment, the LiDAR-only version of the method
showed reduced accuracy. This outcome was expected, as LiDAR odometry in outdoor
environments can be affected by external factors such as moving people, a lack of reli-
able features, or environmental complexity. In such cases, incorporating GPS data proved
critical for achieving more accurate pose estimations.

Nevertheless, even in the LiDAR-only configuration, the proposed method outper-
formed the state-of-the-art algorithms in both indoor and outdoor scenarios. Specifically,
in the indoor experiment, the proposed methods outperformed FAST-LIO in terms of
both ATE and RPE, while in the outdoor experiment, L-IS and L-InEKF outperformed
KISS-ICP in both metrics.

The IS demonstrated superior position accuracy across all tests, but the InEKF
achieved comparable results. During the experiments, a window size of 15 was se-
lected for the IS to ensure all potential updates from LiDAR and GPS were captured,
minimizing the risk of losing important exteroceptive information. While this choice
enhanced position accuracy, it also increased computational time.

For future work, we plan to:

• Perform a thorough comparison of the proposed methods with MUSE. The use of
Lie Groups in the invariant state estimation framework could offer advantages over
MUSE, which relies on a LTV-KF in its Sensor Fusion module. Our results have
shown that the InEKF achieves comparable execution times to MUSE; however,
we have only evaluated the InEKF on offline data, not in online experiments. In
contrast, the IS has demonstrated higher accuracy than the InEKF. It would be

125

5.12. Conclusion

valuable to investigate whether this superior accuracy holds up against MUSE,
particularly in terms of rotational error. This is especially relevant because MUSE
applies orientation corrections using exteroceptive data, which the IS does not
currently incorporate.

• Include orientation correction in the proposed method to further enhance accuracy.

• Integrate additional sensor modalities, such as visual odometry, to improve the
robustness and performance of the approach, particularly in challenging environ-
ments where LiDAR or GPS data alone may be insufficient.

• Fuse the proprioceptive-based frameworks in Lie Group with exteroceptive mea-
surements in a tightly coupled manner and compare the performance with the
current approach.

126

Chapter 6

Conclusion and Future Works

6.1 Conclusion

Throughout the three years of this Ph.D. research, we studied and explored multiple
approaches to address the challenges of state estimation for legged robots. Three central
questions guided our work:

1. Can we make the robot aware of its surrounding environment, particularly detecting
whether the terrain it is traversing is slippery or not?

2. How can slip detection improve state estimation?

3. Can we provide robust and accurate state estimation, and which techniques are
best suited for this purpose?

In this thesis, we proposed methods and frameworks to answer these questions. The
slip detection algorithm enabled slippery-terrain awareness, improving the state estima-
tion in challenging conditions. MUSE, a multi-sensor state estimator, demonstrated fast
and accurate performance, suitable for real-time applications. Additionally, the invariant
frameworks (InEKF and IS) leveraged Lie theory to provide mathematically consistent
and robust estimation.

First, in Chapter 3 recognizing the importance of terrain awareness for legged robots,
we proposed an algorithm to detect slippage. This algorithm can enable robots to identify
and respond to unstable or slippery terrain, improving their ability to adapt to different
surfaces and maintain stable locomotion. The slippage detection method is a key step

127

6.2. Future Works

toward ensuring reliable operation in diverse environments, addressing a fundamental
limitation of traditional state estimators. In our case, slip detection has been used to
improve state estimation, allowing us to discard potentially unreliable measurements that
can negatively affect the estimation process.

Building on this, in Chapter 4 we introduced MUSE, a multi-sensor state estimation
framework based on Kalman filtering. MUSE integrates data from multiple sensors,
including IMUs, encoders, force/torque sensors, cameras, and LiDARs, to provide accu-
rate and reliable state estimation for quadruped robots. MUSE is designed to handle the
challenges of real-world environments, such as slippery or uneven terrain, and is built to
be modular and flexible, allowing it to interface with various robot platforms and sensor
configurations. MUSE demonstrated its capability to fuse data from multiple sensors
efficiently, achieving both speed and accuracy. Its reliability and performance in online
experiments make it particularly suited for scenarios where computational efficiency and
accuracy are critical, such as in robotic locomotion and navigation tasks.

Finally, in Chapter 5 we developed two advanced state estimation frameworks
based on Lie theory: the Invariant Extended Kalman Filter (InEKF) and the Invariant
Smoother (IS). These frameworks leverage the mathematical properties of Lie groups to
achieve better consistency and robustness in state estimation. The InEKF proved to be
highly efficient, making it suitable for real-time applications, while the invariant smoother
demonstrated superior accuracy, making it ideal for offline or mapping applications where
computational time is less constrained.

In summary, this thesis presents a comprehensive exploration of state estimation
techniques for legged robots. From slippage detection to the development of advanced
multi-sensor and Lie-theory-based frameworks, the work covered a wide spectrum of
approaches and mathematical tools. The proposed methods address key challenges in
the field, contributing solutions that are both theoretically sound and practically relevant.

6.2 Future Works

Nevertheless, despite the progress achieved, this journey has raised several questions that
warrant further exploration. In particular:

• Which method is better, MUSE or the invariant frameworks? Each has
its own strengths and limitations, and determining the most suitable approach
requires further investigation under diverse scenarios.

• Which algorithm is more suitable for SLAM and mapping applications?

128

6.2. Future Works

This question becomes especially relevant when dealing with dynamic environ-
ments, where current methods often fail. Understanding how to best handle dy-
namic elements in SLAM remains an open challenge.

These unanswered questions point toward future directions for research. A key di-
rection is a comprehensive comparison of MUSE and the proposed invariant methods,
InEKF and IS. While this thesis has demonstrated the individual strengths of each frame-
work, a detailed evaluation of their performance under diverse conditions will provide a
clearer understanding of their respective advantages and limitations. Specifically:

Accuracy vs. Efficiency: MUSE has demonstrated high-speed performance, making
it suitable for real-time applications. The invariant methods, particularly the smoother
ones, excel in accuracy but come at a higher computational cost. A direct comparison
could help identify scenarios where each approach is most effective.

Robustness in Complex Environments: Comparing how MUSE and the invariant
frameworks handle slippage, sensor noise, or loss of data (e.g., from GPS or LiDAR)
could provide insights into their robustness.

Applicability to Offline vs. Real-Time Applications: MUSE is designed for real-
time operation, while the smoother-based approach may be more suited for offline map-
ping or high-precision localization tasks. Evaluating their performance in these contexts
could help determine the best use cases for each method. Furthermore, despite the
computation time for the InEKF suggested it is suitable for real-time applications, our
algorithm has never been tested online on a real robot. This is a crucial step to validate
the algorithm and to understand its performance in real-world scenarios.

Convergence properties: XKF vs. InEKF The convergence properties of the two
filters, the XKF and the InEKF, warrant a detailed comparison, particularly in terms of
attitude estimation stability and robustness to initialization errors. The cascade struc-
ture of NLO+XKF has been shown to exhibit global stability in most scenarios, even
under large initialization errors, as demonstrated by Fink and Semini [34], Mahony et al.
[107, 112]. This robustness arises from the NLO, which is Lyapunov-stable and capa-
ble of handling substantial initial orientation errors while reliably converging to the true
attitude. Once the NLO provides a bounded and convergent estimate, the LTV-KF
operates within a regime where linearization errors are limited. Furthermore, the XKF,
applied in a linear time-varying manner along the NLO trajectory, delivers near-optimal

129

6.2. Future Works

corrections of the Gaussian noise, thereby enhancing overall accuracy. In contrast, the
InEKF offers a fundamentally different approach by preserving invariance on the rota-
tion group SO(3). This ensures that the estimated attitude remains consistent with
the underlying manifold, an important feature for applications requiring strict geomet-
ric adherence. However, unlike the NLO, the InEKF has been shown to provide local
or semi-global stability, as highlighted in (Barrau and Bonnabel [124]), and does not
guarantee global convergence when initialization errors are large. A systematic com-
parison of these two filters in terms of their attitude estimation capabilities could yield
valuable insights into the stability characteristics of the InEKF, particularly its sensitivity
to initialization errors. Moreover, exploring their relative performance under conditions
of small initialization errors presents an interesting direction for future research. Such
an investigation would not only clarify the operational limits of each filter but also guide
their application in practical scenarios where trade-offs between stability, accuracy, and
computational efficiency are critical.

This comparison could be conducted through extensive real-world experiments, cov-
ering diverse terrains, dynamic environments, and varying sensor configurations. Such
a study would not only validate the proposed frameworks but also provide a clearer
roadmap for selecting or hybridizing methods for specific robotic applications. A deeper
exploration of the trade-offs between different estimation techniques, their applicability
to SLAM, and their performance in dynamic and complex environments will help advance
the field of legged robotics. As the field progresses, the insights gained from this work
form a foundation for further discoveries and innovations in robust state estimation,
enabling legged robots to navigate and adapt to continuously changing environments.

Additionally, future research will focus on enhancing key components of the proposed
frameworks to improve overall estimation performance. Advanced terrain estimation
techniques, such as real-time estimation of friction coefficients and terrain properties
such as inclination and softness, will be crucial for enabling fully autonomous operations.
Furthermore, more reliable mapping methods will support long-term autonomy by helping
robots build a comprehensive understanding of their environments. These advancements
will enhance the robot’s ability to autonomously navigate complex terrain, maintain
stability, and perform sophisticated tasks.

130

Bibliography

[1] Ylenia Nisticò, Shamel Fahmi, Lucia Pallottino, Claudio Semini, and Geoff Fink.
On slip detection for quadruped robots. Sensors, 22(8), 2022. ISSN 1424-8220.
DOI: 10.3390/s22082967.

[2] David Wisth, Marco Camurri, and Maurice Fallon. VILENS: Visual, inertial, lidar,
and leg odometry for all-terrain legged robots. IEEE Transactions on Robotics,
2022. DOI: 10.1109/TRO.2022.3193788.

[3] Hyunjun Lim, Byeongho Yu, Yeeun Kim, Joowoong Byun, Soonpyo Kwon, Hae-
won Park, and Hyun Myung. WALK-VIO: Walking-motion-adaptive leg kine-
matic constraint visual-inertial odometry for quadruped robots. arXiv preprint
arXiv:2111.15164, 2021.

[4] Yeeun Kim, Byeongho Yu, Eungchang Mason Lee, Joonha Kim, Haewon Park, and
Hyun Myung. STEP: State estimator for legged robots using a preintegrated foot
velocity factor. IEEE Robotics and Automation Letters, 7(2):4456–4463, 2022.
DOI: 10.1109/LRA.2022.3150844.

[5] Unitree. Aliengo by Unitree Robotics https://www.unitree.com/products/

aliengo/, 2019. Last accessed in December 2024.

[6] Marco Camurri, Milad Ramezani, Simona Nobili, and Maurice Fallon. Pronto: A
multi-sensor state estimator for legged robots in real-world scenarios. Frontiers in
Robotics and AI, 7, 2020. ISSN 2296-9144. DOI: 10.3389/frobt.2020.00068.

[7] Michael Bloesch, Michael Burri, Hannes Sommer, Roland Siegwart, and Marco
Hutter. The two-state implicit filter recursive estimation for mobile robots. IEEE
Robotics and Automation Letters, 3(1):573–580, 2018. DOI: 10.1109/LRA.

2017.2776340.

131

10.3390/s22082967
10.1109/TRO.2022.3193788
10.1109/LRA.2022.3150844
https://www.unitree.com/products/aliengo/
https://www.unitree.com/products/aliengo/
10.3389/frobt.2020.00068
10.1109/LRA.2017.2776340
10.1109/LRA.2017.2776340

BIBLIOGRAPHY

[8] Kenny Chen, Ryan Nemiroff, and Brett T. Lopez. Direct LiDAR-Inertial Odom-
etry: Lightweight LIO with Continuous-Time Motion Correction. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 3983–3989,
2023. DOI: 10.1109/ICRA48891.2023.10160508.

[9] Ignacio Vizzo, Tiziano Guadagnino, Benedikt Mersch, Louis Wiesmann, Jens
Behley, and Cyrill Stachniss. KISS-ICP: In defense of point-to-point ICP – sim-
ple, accurate, and robust registration if done the right way. IEEE Robotics and
Automation Letters, 8(2):1029–1036, February 2023. DOI: 10.1109/lra.2023.

3236571.

[10] Young-Ha Shin, Seungwoo Hong, Sangyoung Woo, JongHun Choe, Harim Son,
Gijeong Kim, Joon-Ha Kim, KangKyu Lee, Jemin Hwangbo, and Hae-Won Park.
Design of KAIST HOUND, a Quadruped Robot Platform for Fast and Efficient
Locomotion with Mixed-Integer Nonlinear Optimization of a Gear Train. In 2022
International Conference on Robotics and Automation (ICRA), pages 6614–6620,
2022. DOI: 10.1109/ICRA46639.2022.9811755.

[11] Wei Xu and Fu Zhang. FAST-LIO: A Fast, Robust LiDAR-Inertial Odometry Pack-
age by Tightly-Coupled Iterated Kalman Filter. IEEE Robotics and Automation
Letters, 6(2):3317–3324, 2021. DOI: 10.1109/LRA.2021.3064227.

[12] Peter Fankhauser and Marco Hutter. ANYmal: a unique quadruped robot con-
quering harsh environments. Research Features, 126:54–57, May 2018. doi:
10.3929/ethz-b-000262484.

[13] Boston Dynamics. Spot-the Agile Mobile Robot, 2020. URL https://

bostondynamics.com/products/spot. Last accessed in December 2024.

[14] Evan Ackerman. Boston dynamics’ spot is helping chernobyl move to-
wards safe decommissioning, 2020. URL https://spectrum.ieee.org/

boston-dynamics-spot-chernobyl. Last accessed in December 2024.

[15] Claudio Semini, Victor Barasuol, Michele Focchi, Chundri Boelens, Mohamed
Emara, Salvatore Casella, Octavio Villarreal, Romeo Orsolino, Geoff Fink, Shamel
Fahmi, Gustavo Medrano-Cerda, Dhinesh Sangiah, Jack Lesniewski, Kyle Fulton,
Michel Donadon, Mike Baker, and Darwin G Caldwell. Brief introduction to the
quadruped robot HyQReal. In Italian Conference on Robotics and Intelligent Ma-
chines (I-RIM), pages 1–2, Rome, October 2019.

132

10.1109/ICRA48891.2023.10160508
10.1109/lra.2023.3236571
10.1109/lra.2023.3236571
10.1109/ICRA46639.2022.9811755
10.1109/LRA.2021.3064227
https://bostondynamics.com/products/spot
https://bostondynamics.com/products/spot
https://spectrum.ieee.org/boston-dynamics-spot-chernobyl
https://spectrum.ieee.org/boston-dynamics-spot-chernobyl

BIBLIOGRAPHY

[16] Claudio Semini and Matteo Gatti. Vinum project, 2024. URL https://

vinum-robot.eu/. Last accessed in December 2024.

[17] Paolo Guadagna, M Fernandes, F Chen, Alessandro Santamaria, Tao Teng, Tom-
maso Frioni, DG Caldwell, Stefano Poni, C Semini, and Matteo Gatti. Using
deep learning for pruning region detection and plant organ segmentation in dor-
mant spur-pruned grapevines. Precision Agriculture, 24(4):1547–1569, 2023. DOI:
10.1007/s11119-023-10006-y.

[18] DFKI Robotics Innovation Center. Crex, crater explorer, 2020. URL https:

//robotik.dfki-bremen.de/en/research/robot-systems/crex. Last ac-
cessed in December 2024.

[19] Alexander Dettmann, Steffen Planthaber, Vinzenz Bargsten, Raul Dominguez,
Gianluca Cerilli, Marco Marchitto, Geoff Fink, Michele Focchi, Victor Barasuol,
Claudio Semini, et al. Towards a generic navigation and locomotion control system
for legged space exploration. In 16th Symposium on Advanced Space Technologies
in Robotics and Automation, 2022.

[20] Lorenzo Amatucci, Giulio Turrisi, Angelo Bratta, Victor Barasuol, and Claudio
Semini. VERO: A vacuum-cleaner-equipped quadruped robot for efficient litter
removal. Journal of Field Robotics, 2024. DOI: 10.1002/rob.22350.

[21] Evan Ackerman. Robot dog cleans up beaches with foot-mounted vacuums. thanks
to VERO, Genoa has fewer cigarette butts littering the ground, 2024. URL https:

//spectrum.ieee.org/robot-dog-vacuum. Last accessed in December 2024.

[22] Boston Dynamics Inc. Atlas | Partners in Parkour, 2021. URL https://www.

youtube.com/watch?v=tF4DML7FIWk&ab_channel=BostonDynamics. Last ac-
cessed in December 2024.

[23] Unitree Robotics. Unitree G1, Humanoid agent AI avatar, 2024. URL https:

//www.unitree.com/g1. Last accessed in December 2024.

[24] Figure. Figure is the first-of-its-kind AI robotics company bringing a general pur-
pose humanoid to life., 2024. URL https://www.figure.ai/. Last accessed in
December 2024.

[25] Timothy D. Barfoot. State Estimation for Robotics: Second Edition. Cambridge
University Press, 2 edition, 2024. DOI: 10.1017/9781009299909.

133

https://vinum-robot.eu/
https://vinum-robot.eu/
 10.1007/s11119-023-10006-y
https://robotik.dfki-bremen.de/en/research/robot-systems/crex
https://robotik.dfki-bremen.de/en/research/robot-systems/crex
 10.1002/rob.22350
https://spectrum.ieee.org/robot-dog-vacuum
https://spectrum.ieee.org/robot-dog-vacuum
https://www.youtube.com/watch?v=tF4DML7FIWk&ab_channel=BostonDynamics
https://www.youtube.com/watch?v=tF4DML7FIWk&ab_channel=BostonDynamics
https://www.unitree.com/g1
https://www.unitree.com/g1
https://www.figure.ai/
10.1017/9781009299909

BIBLIOGRAPHY

[26] KVH Industries. KVH P-1775 IMU, 2024. URL https://canalgeomatics.com/

product/kvh-p-1775-imu/. Last accessed in December 2024.

[27] Avago Technologies. AEDA-3300 Series, Ultra Miniature, High Resolution In-
cremental Kit Encoders, 2024. URL https://media.digikey.com/pdf/Data%

20Sheets/Avago%20PDFs/AEDA-3300%20Series.pdf. Last accessed in Decem-
ber 2024.

[28] Inc Technical Laboratory Systems. HEX 6-Axis Force/Torque sensor, 2024. URL
https://tech-labs.com/products/hex-6-axis-forcetorque-sensor.
Last accessed in December 2024.

[29] Michael Bloesch and Marco Hutter. Technical Implementations of the Sense of
Balance, pages 1–29. Springer Netherlands, Dordrecht, 2016. ISBN 978-94-007-
7194-9. DOI: 10.1007/978-94-007-7194-9_69-2.

[30] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul
Furgale. Keyframe-based visual–inertial odometry using nonlinear optimization.
The International Journal of Robotics Research, 34(3):314–334, 2015. DOI: 10.

1177/0278364914554813.

[31] Michael Bloesch, Marco Hutter, Mark A Hoepflinger, Stefan Leutenegger, Chris-
tian Gehring, C David Remy, and Roland Siegwart. State estimation for legged
robots: consistent fusion of leg kinematics and IMU. Robotics, 17:17–24, July
2013. DOI: 10.15607/RSS.2012.VIII.003.

[32] Marco Hutter, Christian Gehring, Michael Bloesch, Mark A Hoepflinger, C David
Remy, and Roland Siegwart. StarlETH: A compliant quadrupedal robot for fast,
efficient, and versatile locomotion. In Adaptive Mobile Robotics, pages 483–490.
World Scientific, September 2012. doi: 10.1142/9789814415958_0062.

[33] Nicholas Rotella, Michael Bloesch, Ludovic Righetti, and Stefan Schaal. State
estimation for a humanoid robot. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 952–958, 2014. DOI: 10.1109/IROS.

2014.6942674.

[34] Geoff Fink and Claudio Semini. Proprioceptive sensor fusion for quadruped robot
state estimation. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 10914–10920, 2020. DOI: 10.1109/IROS45743.

2020.9341521.

134

https://canalgeomatics.com/product/kvh-p-1775-imu/
https://canalgeomatics.com/product/kvh-p-1775-imu/
https://media.digikey.com/pdf/Data%20Sheets/Avago%20PDFs/AEDA-3300%20Series.pdf
https://media.digikey.com/pdf/Data%20Sheets/Avago%20PDFs/AEDA-3300%20Series.pdf
https://tech-labs.com/products/hex-6-axis-forcetorque-sensor
10.1007/978-94-007-7194-9_69-2
 10.1177/0278364914554813
 10.1177/0278364914554813
10.15607/RSS.2012.VIII.003
10.1109/IROS.2014.6942674
10.1109/IROS.2014.6942674
10.1109/IROS45743.2020.9341521
10.1109/IROS45743.2020.9341521

BIBLIOGRAPHY

[35] Claudio Semini, Nikolaos Tsagarakis, Emanuele Guglielmino, Michele Focchi, Fer-
dinando Cannella, and Darwin G Caldwell. Design of HyQ – a hydraulically and
electrically actuated quadruped robot. IMechE Part I: Journal of Systems and Con-
trol Engineering, 225(6):831–849, feb 2011. DOI: 10.1177/0959651811402275.

[36] Ross Hartley, Maani Ghaffari, Ryan M Eustice, and Jessy W Grizzle. Contact-
aided invariant extended Kalman filtering for robot state estimation. The Inter-
national Journal of Robotics Research, 39(4):402–430, 2020. DOI: 10.1177/

0278364919894385.

[37] Agility Robotics. Cassie bipedal robot, 2024. https://agilityrobotics.com/,
Last accessed in October 2024.

[38] Prashanth Ramadoss, Giulio Romualdi, Stefano Dafarra, Francisco Javier An-
drade Chavez, Silvio Traversaro, and Daniele Pucci. DILIGENT-KIO: A propriocep-
tive base estimator for humanoid robots using extended kalman filtering on matrix
lie groups. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 2904–2910, 2021. DOI: 10.1109/ICRA48506.2021.9561248.

[39] Giorgio Metta, Lorenzo Natale, Francesco Nori, Giulio Sandini, David Vernon,
Luciano Fadiga, Claes Von Hofsten, Kerstin Rosander, Manuel Lopes, José Santos-
Victor, et al. The iCub humanoid robot: An open-systems platform for research
in cognitive development. Neural networks, 23(8-9):1125–1134, 2010. DOI: 10.

1016/j.neunet.2010.08.010.

[40] Marco Camurri, Maurice Fallon, Stéphane Bazeille, Andreea Radulescu, Victor
Barasuol, Darwin G. Caldwell, and Claudio Semini. Probabilistic contact estimation
and impact detection for state estimation of quadruped robots. IEEE Robotics and
Automation Letters, 2(2):1023–1030, 2017. DOI: 10.1109/LRA.2017.2652491.

[41] Michael Bloesch, Christian Gehring, Peter Fankhauser, Marco Hutter, Mark A
Hoepflinger, and Roland Siegwart. State estimation for legged robots on unstable
and slippery terrain. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 6058–6064. IEEE, 2013. DOI: 10.1109/

IROS.2013.6697236.

[42] Fabian Jenelten, Jemin Hwangbo, Fabian Tresoldi, C Dario Bellicoso, and Marco
Hutter. Dynamic locomotion on slippery ground. IEEE Robotics and Automation
Letters, 4(4):4170–4176, October 2019. DOI: 10.1109/LRA.2019.2931284.

135

10.1177/0959651811402275
10.1177/0278364919894385
10.1177/0278364919894385
https://agilityrobotics.com/
10.1109/ICRA48506.2021.9561248
 10.1016/j.neunet.2010.08.010
 10.1016/j.neunet.2010.08.010
10.1109/LRA.2017.2652491
10.1109/IROS.2013.6697236
10.1109/IROS.2013.6697236
10.1109/LRA.2019.2931284

BIBLIOGRAPHY

[43] Marco Hutter, Christian Gehring, Andreas Lauber, Fabian Gunther, Carmine Dario
Bellicoso, Vassilios Tsounis, Péter Fankhauser, Remo Diethelm, Samuel Bach-
mann, Michael Blösch, et al. ANYmal - toward legged robots for harsh environ-
ments. Advanced Robotics, 31(17):918–931, 2017. DOI: 10.1080/01691864.

2017.1378591.

[44] David Wisth, Marco Camurri, and Maurice Fallon. Preintegrated velocity bias
estimation to overcome contact nonlinearities in legged robot odometry. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 392–
398. IEEE, 2020. DOI: 10.1109/ICRA40945.2020.9197214.

[45] Médéric Fourmy, Thomas Flayols, Pierre-Alexandre Léziart, Nicolas Mansard, and
Joan Solà. Contact forces preintegration for estimation in legged robotics using
factor graphs. In 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1372–1378. IEEE, 2021. DOI: 10.1109/ICRA48506.2021.

9561037.

[46] Shamel Fahmi, Geoff Fink, and Claudio Semini. On State Estimation for Legged
Locomotion Over Soft Terrain. IEEE Sensors Letters, 5(1):1–4, 2021. DOI:
10.1109/LSENS.2021.3049954.

[47] Joon-Ha Kim, Seungwoo Hong, Gwanghyeon Ji, Seunghun Jeon, Jemin Hwangbo,
Jun-Ho Oh, and Hae-Won Park. Legged robot state estimation with dynamic
contact event information. IEEE Robotics and Automation Letters, 6(4):6733–
6740, 2021.

[48] Shangru Yang, Qingjun Yang, Rui Zhu, Zhenyang Zhang, Congfei Li, and Hu Liu.
State estimation of hydraulic quadruped robots using invariant-EKF and kinemat-
ics with neural networks. Neural Computing and Applications, pages 1–14, 2023.
DOI: 10.1007/s00521-023-08755-y.

[49] Hilton Marques Souza Santana, João Carlos Virgolino Soares, Ylenia Nisticò,
Marco Antonio Meggiolaro, and Claudio Semini. Proprioceptive state estima-
tion for quadruped robots using invariant kalman filtering and scale-variant robust
cost functions. arXiv preprint arXiv:2410.05256, 2024.

[50] Ziwon Yoon, Joon-Ha Kim, and Hae-Won Park. Invariant smoother for legged
robot state estimation with dynamic contact event information. IEEE Transactions
on Robotics, 40:193–212, 2024. DOI: 10.1109/TRO.2023.3328202.

136

10.1080/01691864.2017.1378591
10.1080/01691864.2017.1378591
10.1109/ICRA40945.2020.9197214
10.1109/ICRA48506.2021.9561037
10.1109/ICRA48506.2021.9561037
10.1109/LSENS.2021.3049954
10.1007/s00521-023-08755-y
10.1109/TRO.2023.3328202

BIBLIOGRAPHY

[51] Intel RealSense. Depth Camera D435, 2024. URL https://www.

intelrealsense.com/depth-camera-d435/. Last accessed in December 2024.

[52] Ouster. Vlp-16 Mid-range LiDAR sensor, 2024. URL https://ouster.com/

products/hardware/vlp-16. Last accessed in December 2024.

[53] Dongjae Lee, Minwoo Jung, Wooseong Yang, and Ayoung Kim. Lidar odom-
etry survey: recent advancements and remaining challenges. Intelligent Service
Robotics, 17(2):95–118, 2024. DOI: 10.1007/s11370-024-00515-8.

[54] Basheer Al-Tawil, Thorsten Hempel, Ahmed Abdelrahman, and Ayoub Al-Hamadi.
A review of visual SLAM for robotics: evolution, properties, and future applica-
tions. Frontiers in Robotics and AI, 11:1347985, 2024. DOI: 10.3389/frobt.

2024.1347985.

[55] Ali Tourani, Hriday Bavle, Jose Luis Sanchez-Lopez, and Holger Voos. Visual
SLAM: What are the current trends and what to expect? Sensors, 22(23), 2022.
ISSN 1424-8220. URL https://www.mdpi.com/1424-8220/22/23/9297. DOI:
10.3390/s22239297.

[56] ROS. tf, 2024. URL https://wiki.ros.org/tf. Last accessed in January 2025.

[57] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings of
the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., volume 1, pages I–I, 2004. DOI: 10.1109/

CVPR.2004.1315094.

[58] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial]. IEEE
Robotics & Automation Magazine, 18(4):80–92, 2011. DOI: 10.1109/MRA.2011.

943233.

[59] Friedrich Fraundorfer and Davide Scaramuzza. Visual odometry: Part ii: Match-
ing, robustness, optimization, and applications. IEEE Robotics & Automation
Magazine, 19(2):78–90, 2012. DOI: 10.1109/MRA.2012.2182810.

[60] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José
Neira, Ian Reid, and John J. Leonard. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE Transactions
on Robotics, 32(6):1309–1332, 2016. DOI: 10.1109/TRO.2016.2624754.

137

https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://ouster.com/products/hardware/vlp-16
https://ouster.com/products/hardware/vlp-16
 10.1007/s11370-024-00515-8
 10.3389/frobt.2024.1347985
 10.3389/frobt.2024.1347985
https://www.mdpi.com/1424-8220/22/23/9297
 10.3390/s22239297
https://wiki.ros.org/tf
10.1109/CVPR.2004.1315094
10.1109/CVPR.2004.1315094
10.1109/MRA.2011.943233
10.1109/MRA.2011.943233
10.1109/MRA.2012.2182810
10.1109/TRO.2016.2624754

BIBLIOGRAPHY

[61] Joan Sola, Andre Monin, and Michel Devy. BiCamSLAM: Two times mono is more
than stereo. In Proceedings 2007 IEEE International Conference on Robotics and
Automation, pages 4795–4800, 2007. DOI: 10.1109/ROBOT.2007.364218.

[62] Albert S. Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Mat-
urana, Dieter Fox, and Nicholas Roy. Visual Odometry and Mapping for Au-
tonomous Flight Using an RGB-D Camera, pages 235–252. Springer Inter-
national Publishing, Cham, 2017. ISBN 978-3-319-29363-9. DOI: 10.1007/

978-3-319-29363-9_14.

[63] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. ORB-SLAM: A versatile
and accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):
1147–1163, 2015. DOI: 10.1109/TRO.2015.2463671.

[64] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: An open-source SLAM system
for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 33
(5):1255–1262, 2017. DOI: 10.1109/TRO.2017.2705103.

[65] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and
Juan D Tardós. ORB-SLAM3: An accurate open-source library for visual, visual–
inertial, and multimap SLAM. IEEE Transactions on Robotics, 37(6):1874–1890,
2021. DOI: 10.1109/tro.2021.3075644.

[66] Christian Forster, Zichao Zhang, Michael Gassner, Manuel Werlberger, and Davide
Scaramuzza. SVO: Semidirect visual odometry for monocular and multicamera
systems. IEEE Transactions on Robotics, 33(2):249–265, 2016. DOI: 10.1109/

TRO.2016.2623335.

[67] Gabriel Fischer Abati, João Carlos Virgolino Soares, Vivian Suzano Medeiros,
Marco Antonio Meggiolaro, and Claudio Semini. Panoptic-SLAM: Visual SLAM
in dynamic environments using panoptic segmentation. In 2024 21st Inter-
national Conference on Ubiquitous Robots (UR), pages 01–08, 2024. DOI:
10.1109/UR61395.2024.10597506.

[68] Weicai Ye, Xinyue Lan, Shuo Chen, Yuhang Ming, Xingyuan Yu, Hujun Bao,
Zhaopeng Cui, and Guofeng Zhang. Pvo: Panoptic visual odometry. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9579–9589, June 2023.

138

10.1109/ROBOT.2007.364218
10.1007/978-3-319-29363-9_14
10.1007/978-3-319-29363-9_14
10.1109/TRO.2015.2463671
10.1109/TRO.2017.2705103
10.1109/tro.2021.3075644
10.1109/TRO.2016.2623335
10.1109/TRO.2016.2623335
10.1109/UR61395.2024.10597506

BIBLIOGRAPHY

[69] Zhengyou Zhang. Iterative Closest Point (ICP), pages 718–720. Springer Inter-
national Publishing, Cham, 2021. ISBN 978-3-030-63416-2. DOI: 10.1109/TRO.

2017.2705103.

[70] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-ICP. In
Robotics: science and systems, volume 2, page 435. Seattle, WA, 2009. DOI:
http://dx.doi.org/10.15607/RSS.2009.V.021.

[71] Kenny Chen, Brett T. Lopez, Ali-akbar Agha-mohammadi, and Ankur Mehta. Di-
rect lidar odometry: Fast localization with dense point clouds. IEEE Robotics and
Automation Letters, 7(2):2000–2007, 2022. DOI: 10.1109/LRA.2022.3142739.

[72] Cyrill Stachniss. Running KISS-ICP on KITTI, 2022. URL https://www.

youtube.com/watch?v=kMMH8rA1ggI&ab_channel=CyrillStachniss. Last
accessed in December 2024.

[73] Tixiao Shan and Brendan Englot. LeGO-LOAM: Lightweight and ground-
optimized LiDAr odometry and mapping on variable terrain. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4758–
4765, 2018. doi: 10.1109/IROS.2018.8594299. DOI: 10.1109/IROS.2018.

8594299.

[74] Simone Ferrari, Luca Di Giammarino, Leonardo Brizi, and Giorgio Grisetti. MAD-
ICP: It is all about matching data–robust and informed lidar odometry. arXiv
preprint arXiv:2405.05828, 2024.

[75] Ji Zhang, Sanjiv Singh, et al. LOAM: Lidar odometry and mapping in real-time.
In Robotics: Science and systems, volume 2(9), pages 1–9. Berkeley, CA, 2014.
DOI: 10.15607/RSS.2014.X.007.

[76] Tiziano Guadagnino, Xieyuanli Chen, Matteo Sodano, Jens Behley, Giorgio
Grisetti, and Cyrill Stachniss. Fast sparse lidar odometry using self-supervised
feature selection on intensity images. IEEE Robotics and Automation Letters, 7
(3):7597–7604, 2022. DOI: 10.1109/LRA.2022.3184454.

[77] Michael Bloesch, Michael Burri, Sammy Omari, Marco Hutter, and Roland Sieg-
wart. Iterated extended Kalman filter based visual-inertial odometry using direct
photometric feedback. The International Journal of Robotics Research, 36(10):
1053–1072, 2017. DOI: 10.1177/0278364917728574.

139

10.1109/TRO.2017.2705103
10.1109/TRO.2017.2705103
http://dx.doi.org/10.15607/RSS.2009.V.021
10.1109/LRA.2022.3142739
https://www.youtube.com/watch?v=kMMH8rA1ggI&ab_channel=CyrillStachniss
https://www.youtube.com/watch?v=kMMH8rA1ggI&ab_channel=CyrillStachniss
10.1109/IROS.2018.8594299
10.1109/IROS.2018.8594299
10.15607/RSS.2014.X.007
10.1109/LRA.2022.3184454
10.1177/0278364917728574

BIBLIOGRAPHY

[78] Tong Qin, Peiliang Li, and Shaojie Shen. VINS-mono: A robust and versatile
monocular visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):
1004–1020, 2018. DOI: 10.1109/TRO.2018.2853729.

[79] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Daniela
Rus. LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and map-
ping. In 2020 IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS), pages 5135–5142. IEEE, 2020. DOI: 10.1109/IROS45743.2020.

9341176.

[80] Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang. FAST-LIO2: Fast
Direct LiDAR-Inertial Odometry. IEEE Transactions on Robotics, 38(4):2053–
2073, 2022. DOI: 10.1109/TRO.2022.3141876.

[81] Jonas Beuchert, Marco Camurri, and Maurice Fallon. Factor graph fusion of
raw GNSS sensing with IMU and LiDAR for precise robot localization without a
base station. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 8415–8421. IEEE, 2023. DOI: http://dx.doi.org/10.1109/

ICRA48891.2023.10161522.

[82] Hilti. Hilti SLAM Challenge, 2021. URL https://hilti-challenge.com/

index.html. Last accessed in January 2025.

[83] Milad Ramezani, Kasra Khosoussi, Gavin Catt, Peyman Moghadam, Jason
Williams, Paulo Borges, Fred Pauling, and Navinda Kottege. Wildcat: Online
continuous-time 3d lidar-inertial slam. arXiv preprint arXiv:2205.12595, 2022.

[84] Hyungtae Lim, Daebeom Kim, Beomsoo Kim, and Hyun Myung. Adalio: Robust
adaptive lidar-inertial odometry in degenerate indoor environments. In 2023 20th
International Conference on Ubiquitous Robots (UR), pages 48–53, 2023. doi:
10.1109/UR57808.2023.10202252.

[85] Hyungtae Lim, Suyong Yeon, Soohyun Ryu, Yonghan Lee, Youngji Kim, Jaeseong
Yun, Euigon Jung, Donghwan Lee, and Hyun Myung. A single correspondence is
enough: Robust global registration to avoid degeneracy in urban environments. In
2022 International Conference on Robotics and Automation (ICRA), pages 8010–
8017, 2022. doi: 10.1109/ICRA46639.2022.9812018.

[86] Boston Dynamics Inc. Atlas and beyond: the world’s most dynamic robots, 2024.
URL https://bostondynamics.com/atlas/. Last accessed in December 2024.

140

10.1109/TRO.2018.2853729
10.1109/IROS45743.2020.9341176
10.1109/IROS45743.2020.9341176
10.1109/TRO.2022.3141876
http://dx.doi.org/10.1109/ICRA48891.2023.10161522
http://dx.doi.org/10.1109/ICRA48891.2023.10161522
https://hilti-challenge.com/index.html
https://hilti-challenge.com/index.html
https://bostondynamics.com/atlas/

BIBLIOGRAPHY

[87] NASA. VALKYRIE, NASA’s first bipedal humanoid robot, 2023. https:

//www.nasa.gov/wp-content/uploads/2023/06/r5-fact-sheet.pdf, Last
accessed in October 2024.

[88] Defense Advanced Research Projects Agency. DARPA Robotics Challenge (DRC),
2015. URL https://www.darpa.mil/program/darpa-robotics-challenge.
Last accessed in December 2024.

[89] Defense Advanced Research Projects Agency. DARPA Subterranean
(SubT) Challenge, 2017. URL https://www.darpa.mil/program/

darpa-robotics-challenge. Last accessed in December 2024.

[90] Sangli Teng, Mark Wilfried Mueller, and Koushil Sreenath. Legged robot state
estimation in slippery environments using invariant extended Kalman filter with
velocity update. 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 3104–3110, 2021. DOI: 10.1109/ICRA48506.2021.9561313.

[91] Hans Kumar, J. Joe Payne, Matthew Travers, Aaron M. Johnson, and Howie
Choset. Periodic SLAM: Using cyclic constraints to improve the performance
of visual-inertial SLAM on legged robots. In 2022 International Conference on
Robotics and Automation (ICRA), pages 9477–9483, 2022. DOI: 10.1109/

ICRA46639.2022.9811634.

[92] Shuo Yang, Zixin Zhang, Zhengyu Fu, and Zachary Manchester. Cerberus: Low-
drift visual-inertial-leg odometry for agile locomotion. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 4193–4199, 2023. DOI:
10.1109/ICRA48891.2023.10160486.

[93] Guangjun Ou, Dong Li, and Hanmin Li. Leg-KILO: Robust kinematic-inertial-
LiDAR odometry for dynamic legged robots. IEEE Robotics and Automation
Letters, 9(10):8194–8201, 2024. DOI: 10.1109/LRA.2024.3440730.

[94] Kamak Ebadi, Lukas Bernreiter, Harel Biggie, Gavin Catt, Yun Chang, Arghya
Chatterjee, Christopher E. Denniston, Simon-Pierre Deschênes, Kyle Harlow,
Shehryar Khattak, Lucas Nogueira, Matteo Palieri, Pavel Petráček, Matěj Petr-
lík, Andrzej Reinke, Vít Krátký, Shibo Zhao, Ali-akbar Agha-mohammadi, Kostas
Alexis, Christoffer Heckman, Kasra Khosoussi, Navinda Kottege, Benjamin Mor-
rell, Marco Hutter, Fred Pauling, François Pomerleau, Martin Saska, Sebastian
Scherer, Roland Siegwart, Jason L. Williams, and Luca Carlone. Present and

141

https://www.nasa.gov/wp-content/uploads/2023/06/r5-fact-sheet.pdf
https://www.nasa.gov/wp-content/uploads/2023/06/r5-fact-sheet.pdf
https://www.darpa.mil/program/darpa-robotics-challenge
https://www.darpa.mil/program/darpa-robotics-challenge
https://www.darpa.mil/program/darpa-robotics-challenge
10.1109/ICRA48506.2021.9561313
10.1109/ICRA46639.2022.9811634
10.1109/ICRA46639.2022.9811634
10.1109/ICRA48891.2023.10160486
10.1109/LRA.2024.3440730

BIBLIOGRAPHY

future of slam in extreme environments: The darpa subt challenge. IEEE Trans-
actions on Robotics, 40:936–959, 2024. doi: 10.1109/TRO.2023.3323938.

[95] Jaejun Park, Do Hun Kong, and Hae-Won Park. Design of anti-skid foot with
passive slip detection mechanism for conditional utilization of heterogeneous foot
pads. IEEE Robotics and Automation Letters, 4(2):1170–1177, 2019. DOI: 10.

1109/LRA.2019.2895888.

[96] Taiyu Okatani and Isao Shimoyama. Evaluation of ground slipperiness during
collision using MEMS local slip sensor. In 2019 IEEE 32nd International Conference
on Micro Electro Mechanical Systems (MEMS), pages 823–825, Seoul, Korea
(South), January 2019. DOI: 10.1109/MEMSYS.2019.8870701.

[97] Yerkebulan Massalim, Zhanat Kappassov, Atakan Varol, and Vincent Hayward.
Robust detection of absence of slip in robot hands and feet. IEEE Sensors Journal,
21(24):27897–27904, November 2021. DOI: 10.1109/JSEN.2021.3127501.

[98] Hiroshi Takemura, Masato Deguchi, Jun Ueda, Yoshio Matsumoto, and Tsukasa
Ogasawara. Slip-adaptive walk of quadruped robot. Robotics and Autonomous
Systems, 53(2):124–141, November 2005. DOI: 10.1016/j.robot.2005.07.

002.

[99] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata,
K. Akachi, and T. Isozumi. Humanoid robot hrp-2. In IEEE International Confer-
ence on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, volume 2,
pages 1083–1090 Vol.2, 2004. DOI: 10.1109/ROBOT.2004.1307969.

[100] K. Kaneko, F. Kanehiro, S. Kajita, M. Morisawa, K. Fujiwara, K. Harada, and
H. Hirukawa. Slip observer for walking on a low friction floor. In 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 634–
640, 2005. DOI: 10.1109/IROS.2005.1545184.

[101] Michele Focchi, Victor Barasuol, Marco Frigerio, Darwin G Caldwell, and Claudio
Semini. Slip detection and recovery for quadruped robots. In Robotics Research,
pages 185–199. Springer, January 2018. DOI: 10.1007/978-3-319-60916-4_

11.

[102] KVH Industries. 1750 IMU, Fiber Optic Gyro Inertial Measurement Unit,
2019. URL https://canalgeomatics.com/wp-content/uploads/2019/11/

kvh-1750-imu-datasheet.pdf. Last accessed in December 2024.

142

10.1109/LRA.2019.2895888
10.1109/LRA.2019.2895888
10.1109/MEMSYS.2019.8870701
10.1109/JSEN.2021.3127501
10.1016/j.robot.2005.07.002
10.1016/j.robot.2005.07.002
10.1109/ROBOT.2004.1307969
10.1109/IROS.2005.1545184
10.1007/978-3-319-60916-4_11
10.1007/978-3-319-60916-4_11
https://canalgeomatics.com/wp-content/uploads/2019/11/kvh-1750-imu-datasheet.pdf
https://canalgeomatics.com/wp-content/uploads/2019/11/kvh-1750-imu-datasheet.pdf

BIBLIOGRAPHY

[103] Ruben Grandia, Fabian Jenelten, Shaohui Yang, Farbod Farshidian, and Marco
Hutter. Perceptive locomotion through nonlinear model-predictive control. IEEE
Transactions on Robotics, 39(5):3402–3421, 2023. DOI: 10.1109/TRO.2023.

3275384.

[104] Intel RealSense. evo: Python package for the evaluation of odom-
etry and SLAM, 2019. URL https://www.intelrealsense.com/

visual-inertial-tracking-case-study/. Last accessed in December
2024.

[105] Rudolph Emil Kalman et al. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35–45, 1960. DOI: 10.1115/1.

3662552.

[106] D Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. John Wiley & Sons, 2006. DOI: 10.1002/0470045345.

[107] Robert Mahony, T. Hamel, and Jean-Michel Pflimlin. Nonlinear complementary
filters on the special orthogonal group. Automatic Control, IEEE Transactions on,
53:1203 – 1218, 07 2008. DOI: 10.1109/TAC.2008.923738.

[108] Tor A. Johansen and Thor I. Fossen. The eXogenous Kalman filter (XKF). In-
ternational Journal of Control, 90(2):161–167, 2017. DOI: 10.1080/00207179.

2016.1172390.

[109] Leonard A McGee and Stanley F Schmidt. Discovery of the Kalman filter as a
practical tool for aerospace and industry. Technical report, 1985.

[110] Eric A Wan and Rudolph Van Der Merwe. The unscented Kalman filter for non-
linear estimation. In Proceedings of the IEEE 2000 adaptive systems for signal
processing, communications, and control symposium (Cat. No. 00EX373), pages
153–158. Ieee, 2000.

[111] David Salmond and Neil J. Gordon. An introduction to particle filters. 2006. URL
https://api.semanticscholar.org/CorpusID:777437.

[112] Robert Mahony, Jochen Trumpf, and Tarek Hamel. Observers for kinematic sys-
tems with symmetry. IFAC Proceedings Volumes, 46(23):617–633, 2013. DOI:
10.3182/20130904-3-FR-2041.00212.

143

10.1109/TRO.2023.3275384
10.1109/TRO.2023.3275384
https://www.intelrealsense.com/visual-inertial-tracking-case-study/
https://www.intelrealsense.com/visual-inertial-tracking-case-study/
10.1115/1.3662552
10.1115/1.3662552
 10.1002/0470045345
10.1109/TAC.2008.923738
10.1080/00207179.2016.1172390
10.1080/00207179.2016.1172390
https://api.semanticscholar.org/CorpusID:777437
10.3182/20130904-3-FR-2041.00212

BIBLIOGRAPHY

[113] David Wisth, Marco Camurri, Sandipan Das, and Maurice Fallon. Unified multi-
modal landmark tracking for tightly coupled lidar-visual-inertial odometry. IEEE
Robotics and Automation Letters, 6(2):1004–1011, 2021. DOI: 10.1109/LRA.

2021.3056380.

[114] F Landis Markley and John L Crassidis. Fundamentals of spacecraft attitude
determination and control, volume 1286. Springer, 2014. DOI: 10.1007/

978-1-4939-0802-8.

[115] Håvard Fjær Grip, Thor I. Fossen, Tor A. Johansen, and Ali Saberi. Glob-
ally exponentially stable attitude and gyro bias estimation with application to
GNSS/INS integration. Automatica, 51:158–166, 2015. ISSN 0005-1098. DOI:
10.1016/j.automatica.2014.10.076.

[116] Michael Grupp. evo: Python package for the evaluation of odometry and SLAM.
https://github.com/MichaelGrupp/evo, 2017.

[117] Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory eval-
uation for visual(-inertial) odometry. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 7244–7251, 2018. doi:
10.1109/IROS.2018.8593941. DOI: 10.1109/IROS.2018.8593941.

[118] Jan Bayer and Jan Faigl. On autonomous spatial exploration with small hexapod
walking robot using tracking camera intel realsense T265. In 2019 European
Conference on Mobile Robots (ECMR), pages 1–6, 2019. doi: 10.1109/ECMR.
2019.8870968. DOI: 10.1109/ECMR.2019.8870968.

[119] Lorenzo Amatucci, Giulio Turrisi, Angelo Bratta, Victor Barasuol, and Claudio
Semini. Accelerating model predictive control for legged robots through distributed
optimization. In 2024 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2024.

[120] Douglas Wildrube Bertol, Geoff Fink, Ylenia Nisticò, Gianluca Cerilli, Marco Mar-
chitto, and Claudio Semini. A practical real-time distributed software framework
for mobile robots. Second Workshop on Quality and Reliability Assessment of
Robotic Software Architectures and Components, ICRA 2023 Workshop, 2023.

[121] Shuo Yang, Zixin Zhang, Zhengyu Fu, and Zachary Manchester. Cerberus: Low-
drift visual-inertial-leg odometry for agile locomotion. In 2023 IEEE International

144

10.1109/LRA.2021.3056380
10.1109/LRA.2021.3056380
10.1007/978-1-4939-0802-8
10.1007/978-1-4939-0802-8
10.1016/j.automatica.2014.10.076
https://github.com/MichaelGrupp/evo
10.1109/IROS.2018.8593941
10.1109/ECMR.2019.8870968

BIBLIOGRAPHY

Conference on Robotics and Automation (ICRA), pages 4193–4199, 2023. DOI:
10.1109/ICRA48891.2023.10160486.

[122] Axel Barrau and Silvere Bonnabel. Invariant kalman filtering. Annual Review
of Control, Robotics, and Autonomous Systems, 1(1):237–257, 2018. DOI: 10.

1146/annurev-control-060117-105010.

[123] Joan Sola, Jeremie Deray, and Dinesh Atchuthan. A micro lie theory for state
estimation in robotics. arXiv preprint arXiv:1812.01537, 2018.

[124] Axel Barrau and Silvère Bonnabel. The invariant extended kalman filter as a stable
observer. IEEE Transactions on Automatic Control, 62(4):1797–1812, 2017. DOI:
10.1109/TAC.2016.2594085.

[125] Timothy D. Barfoot. State Estimation for Robotics. Cambridge University Press,
2017.

[126] Tzu-Yuan Lin, Ray Zhang, Justin Yu, and Maani Ghaffari. Legged robot state esti-
mation using invariant kalman filtering and learned contact events. arXiv preprint
arXiv:2106.15713, 2021.

[127] Sangli Teng, Mark Wilfried Mueller, and Koushil Sreenath. Legged robot state
estimation in slippery environments using invariant extended kalman filter with ve-
locity update. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 3104–3110, 2021. DOI: 10.1109/ICRA48506.2021.9561313.

[128] Yuan Gao, Chengzhi Yuan, and Yan Gu. Invariant filtering for legged humanoid lo-
comotion on a dynamic rigid surface. IEEE/ASME Transactions on Mechatronics,
27(4):1900–1909, 2022. DOI: 10.1109/TMECH.2022.3176015.

[129] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix
Manifolds. Princeton University Press, Princeton, NJ, 2008. ISBN 978-0-691-
13298-3.

[130] Paul Chauchat, Axel Barrau, and Silvere Bonnabel. Invariant smoothing on lie
groups. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1703–1710, 2018. DOI: 10.1109/IROS.2018.8594068.

[131] Alex Walsh, Jonathan Arsenault, and James Richard Forbes. Invariant sliding
window filtering for attitude and bias estimation. In 2019 American Control Con-
ference (ACC), pages 3161–3166, 2019. DOI: 10.23919/ACC.2019.8814702.

145

10.1109/ICRA48891.2023.10160486
10.1146/annurev-control-060117-105010
10.1146/annurev-control-060117-105010
10.1109/TAC.2016.2594085
10.1109/ICRA48506.2021.9561313
10.1109/TMECH.2022.3176015
10.1109/IROS.2018.8594068
10.23919/ACC.2019.8814702

BIBLIOGRAPHY

[132] Axel Barrau. Non-linear state error based extended Kalman filters with applications
to navigation. Theses, Ecole Nationale Supérieure des Mines de Paris, September
2015. URL https://pastel.hal.science/tel-01344622.

[133] Frank Dellaert, Michael Kaess, et al. Factor graphs for robot perception. Foun-
dations and Trends® in Robotics, 6(1-2):1–139, 2017.

[134] Gregory S Chirikjian. Stochastic Models, Information Theory, and Lie Groups,
Volume 1: Classical Results and Geometric Methods. Springer Science & Business
Media, 2009.

[135] Gregory S Chirikjian. Stochastic models, information theory, and Lie groups,
volume 2: Analytic methods and modern applications, volume 2. Springer Science
& Business Media, 2011.

[136] Ethan Eade. Lie groups for 2d and 3d transformations. URL http://ethaneade.
com/lie. pdf, revised Dec, 117:118, 2013.

[137] PS Maybeck. Stochastic models, estimation, and control, 1982.

[138] Holybro. Holybro, 2024. URL https://holybro.com/. Last accessed in Decem-
ber 2024.

[139] Livox. Livox Mid-360 LiDAR, 2024. URL https://www.livoxtech.com/

mid-360. Last accessed in December 2024.

[140] Google. Google Earth, 2024. URL https://www.google.it/earth/. Last
accessed in December 2024.

[141] Ouster. Velodyne VLP-16 LiDAR, 2024. URL https://ouster.com/products/

hardware/vlp-16. Last accessed in December 2024.

[142] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. ROS: an open-source Robot Operating System.
In ICRA workshop on open source software, volume 3.2, page 5. Kobe, Japan,
2009.

[143] Joan Sola, Joan Vallvé, Joaquim Casals, Jérémie Deray, Médéric Fourmy, Dinesh
Atchuthan, Andreu Corominas-Murtra, and Juan Andrade-Cetto. WOLF: A mod-
ular estimation framework for robotics based on factor graphs. IEEE Robotics and
Automation Letters, 7(2):4710–4717, 2022. DOI: 10.1109/LRA.2022.3151404.

146

https://pastel.hal.science/tel-01344622
https://holybro.com/
https://www.livoxtech.com/mid-360
https://www.livoxtech.com/mid-360
https://www.google.it/earth/
https://ouster.com/products/hardware/vlp-16
https://ouster.com/products/hardware/vlp-16
 10.1109/LRA.2022.3151404

BIBLIOGRAPHY

[144] Object Management Group. Data Distribution Service (DDS), 2024. URL
https://www.dds-foundation.org/what-is-dds-3/. Last accessed in De-
cember 2024.

[145] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. Robot operating system 2: Design, architecture, and uses in the wild.
Science Robotics, 7(66):eabm6074, 2022. DOI: https://www.science.org/

doi/abs/10.1126/scirobotics.abm6074.

147

https://www.dds-foundation.org/what-is-dds-3/
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

A

Appendix

Modern robotics systems require robust and efficient software frameworks to handle the
complexities of real-time operations and distributed architectures. While widely adopted
solutions like the Robot Operating System (ROS) (Quigley et al. [142]) provide a generic
foundation, their limitations in scenarios demanding high precision, resource efficiency,
and specific communication protocols highlight the need for specialized frameworks.

This appendix introduces DLS2, a novel real-time distributed software framework, de-
signed specifically for mobile robots, tested on quadrupedal platforms, and implemented
in C++. DLS2 has been employed to manage real-time communication between the
robot’s sensors and the MUSE state estimator presented in Chapter 4. Developed to
overcome the challenges of existing solutions such as the one proposed in (Sola et al.
[143]), which lacked the ability to execute each processor in its own thread, the DLS2
framework emphasizes modularity, containerization, real-time scheduling, and distributed
operations. Its architecture employs a layered design, ensuring that components with
distinct requirements — such as control modules and user interfaces — are logically
grouped and independently managed.

Furthermore, the framework’s use of Data Distribution Service (DDS)-based com-
munication (Management Group [144]) ensures seamless integration with other robotic
systems, such as ROS2 (Macenski et al. [145]), while maintaining flexibility and per-
formance. This integration facilitates the deployment of state-of-the-art algorithms in
mobile robotics, paving the way for robust, real-time, and distributed robotic solutions.

148

A.1. Software Architecture

The DLS2 framework has been introduced in the following publication:

Douglas Wildgrube Bertol, Geoff Fink, Ylenia Nisticò, Gianluca Cerilli, Marco
Marchitto, and Claudio Semini, “A Practical Real-Time Distributed Software
Framework for Mobile Robots”, Second Workshop on Quality and Reliability As-
sessment of Robotic Software Architectures and Components, ICRA 2023 Work-
shop.

This work was conceptualized by Douglas Wildgrube Bertol and Geoff Fink. Software
development was carried out by Douglas Wildgrube Bertol, Geoff Fink, Gianluca Cerilli,
and Marco Marchitto. I contributed by developing and testing MUSE integrated into the
software, as well as conducting experiments to test the developed tools. The initial draft
was prepared by Douglas Wildgrube Bertol and Geoff Fink, with all authors contributing
to the review and editing process.

In the sections that follow, the software’s architecture, key features, and operational
principles are detailed, highlighting its contributions to the field of robotic software
engineering.

A.1 Software Architecture

The DLS2 framework is built on a modular, layered architecture designed to cater to the
specific requirements of mobile robotic systems. Each layer in the architecture is dedi-
cated to managing a group of modules with shared characteristics, ensuring that system
components are logically organized and efficiently supervised. The layered architecture
supports distributed deployment, enabling components to operate across multiple com-
putational nodes. This flexibility ensures resource optimization and system robustness,
as processes can be dynamically relocated to balance the load or maintain redundancy. A
schematic of the DLS2 software architecture is presented in Fig. A.1. Key layers include:
Control Layer: This layer handles modules requiring real-time scheduling and low-
level interface access. The Control Layer governs resource-intensive processes such as
controllers, ensuring they operate with minimal latency and fail-safe constraints.
Estimation Layer: The Estimation layer manages signal gathering, state estimation,
and processing modules. It ensures robust and accurate data integration from multiple
sources, crucial for reliable decision-making. This is the layer where the MUSE state
estimator is integrated.
Service Layer: The Service Layer provides middleware services like communication man-

149

A.2. Key Features and Operational Principles

Hardware layer

Estimation layer

Control layer

Service layer

Log layer

Console layer

DDS communication

re
al

-t
im

e

b
es

t
eff

o
rt

Figure A.1: Schematic of the DLS2 Software Architecture

agement and resource allocation. It ensures seamless interactions between distributed
components.
Logging and Console Layers: These two layers are responsible for non-critical opera-
tions like system logging and user interface management. These layers focus on usability
and diagnostics without impacting performance-critical processes.

A.2 Key Features and Operational Principles

The operational framework of DLS2 is guided by its commitment to modularity, real-
time performance, and distributed resource management. Below is a summary of how
these principles translate into its functioning: Real-time scheduling – The framework
provides real-time scheduling capabilities, ensuring deterministic behavior for control
and estimation processes. This feature is essential for mobile robotic systems, where
precise timing is critical for stability and performance. The DLS2 framework provides
direct access to the low-level kernel Application Programming Interface (API) to im-
plement precise timing mechanisms. Furthermore, DLS2 employs DDS to facilitate
low-latency, reliable communication between distributed processes. This communication
offers high-performance, real-time data sharing with Quality of Service (QoS) guar-
antees. DLS2 remains compatible with ROS2, enabling interoperability with existing
robotic software ecosystems. Containerization – The framework employs containeriza-
tion to isolate modules, avoiding compatibility issues and enabling fast deployment. This
design simplifies system updates and ensures reproducibility in diverse hardware environ-
ments. Distributed Architecture – DLS2 supports true distribution, where processes
can operate on separate nodes while maintaining synchronized communication. Mod-
ules can be duplicated or migrated dynamically across computational nodes to enhance
fault tolerance. Additionally, by isolating modules in containers, researchers can exper-
iment with cutting-edge techniques without disrupting the overall system. Modular
and Resource-Efficient Design – System components are designed as self-contained

150

A.3. Integration of MUSE into DLS2 Framework

modules that can be reused, updated, or replaced independently. This ensures that only
relevant components are deployed for specific applications. The library-oriented frame-
work allows users to deploy only the required modules, reducing computational overhead
and resource consumption. The modularity also simplifies the integration of custom
algorithms and tools.

A.3 Integration of MUSE into DLS2 Framework

The MUSE state estimator described in Chapter 4 is seamlessly integrated into the
DLS2 framework as a collection of modular plugins. This integration leverages DLS2’s
containerized and distributed architecture, allowing real-time, efficient communication
between MUSE modules and other robotic systems.

A.3.1 Plugin structure in DLS2

Each module of MUSE is implemented as a plugin within DLS2, adhering to a standard-
ized structure for consistency and ease of integration. The plugin structure includes the
following components:

1. reader_inputs(): Retrieves the required data inputs, such as sensor readings or
intermediate outputs from other modules.

2. run(): Executes the core computational logic of the module, where algorithms
specific to the module are implemented.

3. publish_outputs(): Outputs the results of the computation, making them avail-
able to other modules or systems.

A.3.2 Modules in MUSE

The MUSE estimator comprises both low-level and high-level estimation modules, each
targeting specific aspects of state estimation:

A.3.2.1 Low-level Estimation Modules

• Contact Detection: This module takes joint state readings from the joint en-
coders and outputs the contact status for each leg. The purpose is to identify
which legs are in contact with the ground, crucial for state estimation, stability,
and locomotion control.

151

A.3. Integration of MUSE into DLS2 Framework

• Attitude Estimation: This module receives inputs from the IMU accelerometer
and gyroscope, and outputs the robot orientation and angular velocity. This mod-
ule is necessary to determine the robot’s attitude providing fundamental data for
locomotion and navigation.

• Leg Odometry: This module estimates the robot’s movement based on leg mo-
tion and sensor readings. It receives inputs from the contact detection and attitude
estimation module, from the joint encoders and from the IMU.

• Slip Detection: This module detects slip events by comparing the expected leg
motion with the actual motion. It receives inputs from the contact detection
module and the joint states.

A.3.2.2 High-level Estimation Modules

• Camera Odometry: This module uses visual data to estimate the robot’s position
in space, taking camera images and giving the pose of the robot as output.

• LiDAR Odometry: This module utilizes 3D spatial data to refine positional
estimates, taking LiDAR scans as input and providing the robot’s pose as output.

• Sensor Fusion: This is the last module, where data from multiple sources are
combined to produce a robust and accurate estimate of the robot’s state. In partic-
ular, it reads inputs from contact detection, attitude estimation, and leg odometry,
(optionally also from slip detection, camera odometry, and LiDAR odometry, de-
pending on the user’s configuration) and outputs the robot’s pose and velocity.

Each plugin operates independently and can be activated or deactivated dynamically
during experiments. This flexibility allows to customize the system based on the task
or available sensors. For instance, camera odometry can be turned off in low-light envi-
ronments, relying instead on LiDAR and low-level estimation modules for sensor fusion.
The modularity allows easy addition or removal of plugins, facilitating experimentation
with new algorithms or sensors without impacting the rest of the system. Online activa-
tion or deactivation of modules provides the ability to adapt to changing experimental
conditions or resource availability. An example of this is shown in Fig. A.2.

Additionally, the modular structure ensures efficient execution, with the average run-
time of each plugin’s run() function measured at 0.05 ms on average (this is also due to
the choice of using filtering methods, as already explained in Section 4.6.8). This speed
enables the system to provide real-time feedback to the robot’s locomotion controller,

152

A.4. Conclusion

Estimation layer

Sensor Fusion

CO AE CD SDLiD-O LO

Estimation layer

Sensor Fusion

CO AE CD SDLiD-O LO

Figure A.2: Dynamic Activation and Deactivation of Modules in DLS2. In the upper figure,
all modules are active, while in the lower figure, the camera odometry module and the slip
detection module are deactivated. This procedure can be executed online, allowing the system
to adapt to changing conditions.

ensuring smooth and responsive operation. By isolating computational tasks into plug-
ins, the system ensures that resource-intensive processes do not interfere with real-time
control requirements.

A.4 Conclusion

The DLS2 framework represents an advancement in robotic software engineering, offering
a real-time, distributed solution tailored to the needs of mobile robots. By emphasiz-
ing modularity, real-time scheduling, and distributed operations, DLS2 provides a robust
software foundation for state-of-the-art algorithms and tools. The integration of the
MUSE state estimator into the framework demonstrates the flexibility and efficiency of
the system, enabling seamless communication between modules and other robotic sys-
tems. The framework’s layered architecture, containerization, and distributed operations
ensure that mobile robots can operate with precision, reliability, and performance, paving
the way for future advancements in robotic software engineering.

Furthermore, the integration of the MUSE state estimator into the DLS2 framework
exemplifies the power of modular, real-time software architecture in mobile robotics. By
treating each estimation module as an independent plugin with standardized operations,
reading inputs, running computations, and publishing outputs, the framework ensures

153

A.4. Conclusion

flexibility, efficiency, and robust performance.
This modular structure not only enables seamless communication and collaboration

between low-level and high-level estimation tasks but also provides the ability to dy-
namically adjust the active components based on experimental needs or environmental
constraints. The integration of advanced modules such as camera and LiDAR odometry,
alongside foundational estimators such as contact, attitude, and slip detection, highlights
the adaptability of the framework to accommodate diverse sensing technologies.

The measured efficiency of plugin execution, averaging 0.05 ms per module, confirms
the suitability of DLS2 for real-time feedback applications. This performance ensures
reliable communication with the locomotion controller, maintaining the stability and
responsiveness essential for dynamic mobile robots.

In summary, the combination of DLS2’s distributed architecture and MUSE’s modular
design demonstrates a scalable and high-performing solution for real-time robotic state
estimation. This framework lays a strong foundation for future innovations in state
estimation and robot control, empowering researchers and engineers to deploy cutting-
edge algorithms with ease and confidence.

154

B

Publications

B.1 List of Publications

Ylenia Nisticò, Shamel Fahmi, Lucia Pallottino, Claudio Semini, and Geoff Fink, “On
slip detection for quadruped robots”. In MDPI Sensors, 22(8), 2967, 2022. DOI:
10.3390/s22082967

Douglas Wildgrube Bertol, Geoff Fink, Ylenia Nisticò, Gianluca Cerilli, Marco Mar-
chitto, and Claudio Semini, “A Practical real-Time Distributed Software Framework
for Mobile Robots”. In Second Workshop on Quality and Reliability Assessment of
Robotic Software Architectures and Components, IEEE/RSJ International Conference
on Robotics and Automation (ICRA) Workshop, 29 May–2 June 2023.

Hilton Marques Souza Santana, João Carlos Virgolino Soares, Ylenia Nisticò, Marco
Antonio Meggiolaro, Claudio Semini, “Proprioceptive State Estimation for Quadruped
Robots using Invariant Kalman Filtering and Scale-Variant Robust Cost Functions”.
In IEEE-RAS International Conference on Humanoid Robots 2024 (Humanoids 2024),
November 22–24, 2024. DOI: 10.48550/arXiv.2410.05256

Ylenia Nisticò, João Carlos Virgolino Soares, Geoff Fink, and Claudio Semini, “Multi-
Sensor Fusion for Quadruped Robot State Estimation on Challenging Terrain”. In 2024

155

https://doi.org/10.3390/s22082967
10.48550/arXiv.2410.05256

B.1. List of Publications

I-RIM 3D Conference, 6th Edition (I-RIM 2024), October 25–27, 2024.

Ylenia Nisticò, João Carlos Virgolino Soares, Lorenzo Amatucci, Geoff Fink, and Clau-
dio Semini, “MUSE: A Real-Time Multi-Sensor State Estimator for Quadruped Robots”.
Under review at IEEE Robotics and Automation Letters (RA-L).

Ylenia Nisticò∗, Hajun Kim∗, João Carlos Virgolino Soares, Geoff Fink, Hae-Won Park,
and Claudio Semini, “Multi-Sensor Fusion for Quadruped Robot State Estimation using
Invariant Filtering and Smoothing”. Under review at IEEE Robotics and Automation
Letters (RA-L). ∗ Equal contribution.

156

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Preface
	Motivation
	Contribution
	Organization of the Thesis

	State of the Art
	Proprioceptive State Estimation
	Proprioceptive State Estimation on Difficult Terrains

	Exteroceptive State Estimation
	Visual Odometry and SLAM
	LiDAR Odometry and SLAM
	Direct matching
	Feature-based matching

	Multi-Sensor State Estimation
	Multi-Sensor State Estimation for Legged Robots

	Summary and Discussion

	Slip Detection on Quadruped Robots
	Preface
	Introduction
	Contribution
	Outline
	Modelling and Sensing
	Contact Estimation
	Baseline Approach
	Single-Leg Slip Detection
	Multiple-Leg Slip Detection
	Drawbacks of the Baseline Approach

	Proposed Slip Detection Algorithm
	Results
	Simulation Results: Trotting onto Patches of Ice
	Experimental Results on the HyQ robot: Crawling on a Slippery Surface

	Discussion
	Limitations

	Conclusion

	The Real-Time Multi-Sensor State Estimator MUSE
	Preface
	Introduction
	Contributions
	Outline
	Theoretical Background
	Kalman Filter
	Linear Time-Varying Continuous-Time Kalman Filter
	Linear Time-Varying Discrete-Time Kalman Filter

	Nonlinear Kalman Filters
	Extended Kalman Filter

	Nonlinear Observer
	eXogeneous Kalman Filter
	Design of the XKF

	Summary of the Theoretical Background

	MUSE Formulation
	Robot Models
	Exteroceptive Odometry
	Contact Estimation
	Leg Odometry
	Slip Detection
	Attitude Observer
	Nonlinear Observer
	eXogeneous Kalman Filter

	Sensor Fusion
	Considerations about time execution

	Experimental Results
	First results: Offline evaluation
	Aliengo walking up and down stairs
	Aliengo walking on uneven and slippery terrain

	Main results: Online evaluation and Benchmarking
	Online evaluation: Closing the loop with the controller
	Offline evaluation and benchmarking: FSC Dataset with ANYmal B300

	Discussion
	Limitations

	Conclusion

	Invariant State Estimation on Lie-Groups
	Preface
	Introduction
	Contributions
	Outline
	Theoretical Background
	Lie Theory
	Group-Affine Properties
	Invariant Filtering vs. Invariant Smoothing
	Summary of the Theoretical Background

	Robot Models and State Definitions
	Continuous-Time System Dynamics

	Invariant Extended Kalman Filter formulation
	Prediction Step
	Right-Invariant Measurement Model
	Forward Kinematics Measurement Model
	LiDAR Measurement Model
	GPS Measurement Model

	Augmented Right-Invariant Observation and Innovation
	Update Equations

	Addition and Removal of Contact Points
	Removing Contact Points
	Adding Contact Points

	Summary of the Invariant Extended Kalman Filter

	Invariant Smoother formulation
	Derivation of the Cost Functions
	Prior Cost Function

	Propagation Cost Function
	Observation Cost Function
	Contact Loop Closure Cost Function
	Summary of the Invariant Smoother

	Slip Rejection Method
	Experimental Results
	Indoor Experiment
	Outdoor Experiment

	Discussion
	Considerations about time execution
	Limitations

	Conclusion

	Conclusion and Future Works
	Conclusion
	Future Works

	Bibliography
	Appendix
	Software Architecture
	Key Features and Operational Principles
	Integration of MUSE into DLS2 Framework
	Plugin structure in DLS2
	Modules in MUSE
	Low-level Estimation Modules
	High-level Estimation Modules

	Conclusion

	Publications
	List of Publications

