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Abstract— We present a footstep planning policy for
quadrupedal locomotion that is able to directly take into
consideration a-priori safety information in its decisions. At its
core, a learning process analyzes terrain patches, classifying
each landing location by its kinematic feasibility, shin collision,
and terrain roughness. This information is then encoded into
a small vector representation and passed as an additional state
to the footstep planning policy, which furthermore proposes
only safe footstep location by applying a masked variant of the
Proximal Policy Optimization algorithm. The performance of
the proposed approach is shown by comparative simulations
and experiments on an electric quadruped robot walking in
different rough terrain scenarios. We show that violations of
the above safety conditions are greatly reduced both during
training and the successive deployment of the policy, resulting
in an inherently safer footstep planner. Furthermore, we
show how, as a byproduct, fewer reward terms are needed
to shape the behavior of the policy, which in return is able
to achieve both better final performances and sample efficiency.

I. INTRODUCTION

Quadruped robots are increasingly entering new applica-
tion domains, such as inspection, construction, and rescue.
To be valuable in such real-world scenarios, robots should
be able to map the surroundings via their onboard sensors,
such as cameras or lidar, in order to choose the best footstep
landing location autonomously and avoid stepping on poten-
tially unsafe regions (e.g., collapsing surfaces, stairs edges,
etc.) which can inevitably bring the systems to failure. Along
with visual information, an additional component needed to
traverse such harsh scenarios is the ability to perform a
reactive stepping strategy for recovery, e.g., modifying the
robot’s footstep at need in the presence of an external dis-
turbance. This requirement further increases the complexity
of the problem, given the need to explicitly consider the
robot’s dynamics along with vision. In both the case of
planning and recovery, the resulting chosen footsteps need
to be kinematically feasible to be actuated by the robot, and
the resulting motion needs to be collision-free in order to
avoid additional ground reaction forces that can destabilize
the motion.

Given the difficulty of achieving all these conditions
concurrently, footstep placement techniques are still heav-
ily studied in the robotic community. In [2], the authors
presented one of the first applications of terrain aware-
ness locomotion to enhance the traversing capabilities of a
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Fig. 1. Snapshots of Aliengo [1] walking over irregular terrains with our
method (left) where footholds that bring safety violations are prohibited at
the action level (black dots), and with a naive RL policy (right) where these
violations are only discouraged during training. Starting from the top, we
depict a kinematic violation, a shin collision, and a slippage due to the foot
being placed over a terrain edge, by the naive RL policy.

quadruped robot. A set of heuristics was analyzed to select
the best foothold locations, discarding possible candidates
near edges, slopes, or holes. This idea was then extended
in [3] by considering body collisions and introducing a
supervised learning regression technique to ease the classifi-
cation problem. Still, given the needed computational time,
the method was unsuitable for reactive and agile motion.
This reactiveness was then achieved by performing regres-
sion via fast Convolutional Neural Networks in [4]. In this
case, candidate footsteps were chosen by analyzing terrain
features, the kinematic limits of the robot, and possible shin
collision. Given the achieved computational speed, the robot
was able to withstand various disturbances applied during its
motion. This method, which we refer to as Visual Foothold
Adaptation (VFA), will be used as the core component of
this work.

More recently, optimization-based control techniques,



such as Model Predictive Control [5] (MPC), were coupled
with vision-based footstep correction [6], [7], [8], [9], [10]
to obtain highly-dynamic and optimal motions. Noticeably,
in [7] and [8], the footstep position was considered as an
additional control variable to be further optimized by the
MPC, taking into consideration a convex constraint obtained
by performing a vision-based segmentation technique.

Although effective in obtaining good performance and
robustness, the above optimization-based approaches have
two main limitations from the viewpoint of this paper. First,
classifying the terrain by employing different criteria, such
as edges analysis, kinematics, and collision, can create a
non-convex foothold constraint. This can be solvable by
employing a Mixed Integer Program, which, however, can
be hard to run in real-time [11]. In fact, standard solutions,
as in [7], only consider the nearest convex constraint. Second,
usually, disturbances are not explicitly estimated. In both
cases, the obtained footstep candidate can be suboptimal.

To bypass the above limitations, Reinforcement Learning
(RL) techniques can be viable solutions for achieving such
optimality, since nonlinear and non-convex problems can be
tractable by employing these methods. In [12], a footstep
policy was learned from scratch together with a whole-body
controller in a hierarchical fashion. Along the same lines, the
authors in [13] proposed a similar architecture for the case
of quadrupedal locomotion, meanwhile, in [14], [15] RL was
proposed to modify leg frequencies, and to generate foot
position or joint residuals, showing impressive real-world
results. In [16], RL was employed to add robustness to a
model-based controller by estimating external disturbances.
Finally, similar to our approach, in [17] RL was used to learn
a footstep planning policy while a model-based controller
was employed to track the generated references. In the same
way, here we employ an MPC controller to devise the robot
motion, concentrating only on the footstep planning task.

However, all these works do not explicitly consider safety
in the learned policy, which can, in some scenarios, still fail
given the black-box nature of the approach. This paper is
aimed to directly take this aspect into consideration.

In this paper, we build upon our visual foothold adaptation
(VFA) technique [4] to devise a safer footstep planning
policy for quadrupedal robots. The basic idea is to outsource
the fulfillment of user-defined safety constraints by mixing
the above model-based module with a specific policy ar-
chitecture in order to guarantee with high probability their
satisfaction. This is done by using the model-based priors
given by the VFA, which perform terrain analysis and check
for kinematic limits and shin collisions, both for defining
the policy’s input and modifying its output. The latter is
done by employing a masking procedure over Proximal
Policy Optimization (PPO) [18], a state-of-the-art model-free
reinforcement learning algorithm, constraining the choice of
the available actions to improve safety (Fig. 1). As a result,
fewer reward terms (the ones that we relate to safety) are
needed for shaping the behavior of the policy, which in return
optimizes only dynamic conditions and terminal violations.

A. Contributions

The main contributions of this work are:
• the design of a footstep planning policy that incorpo-

rates a-priori safety information in its decision. To the
best of the author’s knowledge, no prior work addresses
this specific topic for footstep planning in the context
of RL;

• an extensive evaluation which shows that outsourcing
safety translates into fewer reward terms for shaping
the behavior of the policy, enabling the possibility of
achieving better performances with lower sample com-
plexity. Furthermore, we show that, with our approach,
violations of the user-defined safety constraints are
greatly reduced during the entire learning transient.

As a comparison, first we show the benefit of adopting
an RL policy instead of simpler heuristics for the choice of
the foothold locations, and second we provide an extensive
evaluation of the performance of our method with respect
to standard RL approaches that minimize the same safety
conditions in the reward.

B. Outline

The paper is organized as follows. Section II introduces the
footstep planning problem for quadrupedal robots, highlight-
ing how vision-based and precise footstep placement can be
used to perform locomotion in the presence of rough terrain.
The proposed footstep planning policy is then presented in
Sec. III, where we first discuss the learning procedure for the
a-priori safety constraints, the policy architecture, and finally,
the model-based controller adopted in this work. In Sec. IV,
we report comparative simulation results, meanwhile, some
general conclusions about the approach are drawn in Sec. V.

II. PROBLEM FORMULATION

In this work, we want to learn a footstep planning policy
that is able to choose optimal and safe foot landing locations
in order to maximize the robot’s performance. Commonly,
in the case of blind locomotion and flat terrain, this is done
by computing the next footstep pfoot ∈ R3 as

pfoot = phip +
1

2
Tstance(v

usr
com +wusr

com × bp̄hip) (1)

where p̄hip ∈ R3 is the distance between the hip and
center of the base, Tstance is a scalar representing the stance
duration, and phip ∈ R3 is the projection of the hip on the
ground; finally, vusr

com, wusr
com ∈ R3 are respectively the linear

and desired angular speed of the Center of Mass (CoM). All
these quantities, if not explicitly specified, are expressed in
the world frame W , meanwhile bp̄hip is expressed in the
base frame B.

A drawback of the above equation is that it is only suitable
for blind locomotion, and does not consider disturbances,
limiting the robot’s performance and resilience in a practical
scenario. For performing vision-based footstep planning, in
this work, we build upon the VFA module which computes a
set of heuristic criteria to evaluate the safety of each possible
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Fig. 2. Block diagram of the proposed approach. Starting from the left, the user commands a velocity input, which is then tracked by an MPC controller
and an optimal footstep policy. The last, described in Sec. III, considers the safety information provided by SaFe-Net both in its input state and at the
output level.

landing location in the vicinity of the proposed foothold pfoot

in (1).
The VFA takes a tuple T as an input, evaluates it based

on multiple criteria, and outputs a boolean matrix µsafe
representing which locations are considered safe. The input
tuple for a generic leg in swing is defined as

T =
(
H, z, ϕ, bvcom,

bwcom

)
where H ∈ Rhx×hy is the heightmap of dimensions hx

and hy centered around pfoot, and bvcom, bwcom ∈ R3 are
respectively the linear and angular speed of the CoM in the
base frame. Furthermore, ϕ ∈ [0, 1] is a scalar representing
the gait phase, which continually increases from 0 to 1 as
the leg lifts off until the next touchdown, while z ∈ R is
the hip height. Each cell of the heightmap H contains the
terrain height with respect to the hips of the robot.

In this work, we only consider the following heuristic
criteria: Terrain Roughness (TR), Leg Collision (LC), and
Kinematic Feasibility (KF), which are detailed below:

a) Terrain Roughness (TR): this criterion checks edges in
the heightmap that are unsafe for the robot to step on.
For each candidate foothold pc in H , we evaluate the
height difference relative to its neighboring footholds,
and we consider a threshold to decide whether pc is
safe or not.

b) Leg Collision (LC): this criterion selects footholds that
do not result in a leg collision with the terrain at touch-

down. To do so, we create a bounding region around
the leg configuration corresponding to the candidate
foothold pc and the future hip location. Then, if the
bounding region collides with the terrain, we discard
the candidate foothold.

c) Kinematic Feasibility (KF): this criterion selects kine-
matically feasible footholds, checking whether a candi-
date foothold pc will result in a trajectory that remains
within the workspace of the leg during the entire gait
cycle. For this, we check if the candidate foothold pc is
within the workspace of the leg during touchdown and
next lift-off.

Each criterion C outputs a boolean matrix µC , and the
final output µsafe is computed by performing the element-
wise logical AND (∧) of all the criteria, such as

µsafe = µTR ∧ µLC ∧ µKF.

The output µsafe ∈ Rhx×hy is a boolean matrix with the
same size as the input heightmap H and indicates the safety
of the candidate footholds.

In previous work [6], we chose as the best foothold the
one nearest to the nominal pfoot flagged as safe in µsafe ,
but as detailed in the next section, this choice can result in
a suboptimal robot behavior.

III. THE PROPOSED APPROACH

The presence of the robot’s dynamics and disturbances
affect considerably the footstep planning procedure. First,
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Fig. 3. Image representing the architecture of SaFE-Net (Sec. III-B). For a generic leg in swing i, on the left, we represent the heightmap Hi, while on
the right its prediction µ̂i

safe. The center of the heightmap, pi
foot coming from (1), is indicated with a red circle.

only applying the VFA module and choosing the nearest
foothold location to pfoot can result in worse tracking
performance of the user-commanded twist. For example, in
the case of stair climbing, the robot could choose to step
multiple times in the same area before proceeding. Second,
even when the chosen foothold is optimal, the robot’s motion
can be destabilized by the presence of external disturbances,
and another better step location might exist to aid a recovery
maneuver.

In this section, we describe our safe-footstep planning
policy that is able to reduce the effect of the above con-
ditions. At its core, there is a Neural Network (Sec. III-
A) which classifies the heightmap patches H by learning
the evaluation of the heuristic criteria described in Sec. II
via supervised learning. The network employs an encoder-
decoder structure to confine the classification information
into a smaller subspace hsafe, which is then fed as input
to an RL policy (Sec. III-B), which continuously proposes
the best safe landing location by applying a masked variant
of PPO. Finally, an MPC (Sec. III-C) realizes the robot’s
motion.

A block diagram of the proposed approach is shown in
Fig. 2.

A. Visual Foothold Classification and Encoding

A common approach used to embed visual information
inside an RL policy is by employing a separate neural
network with an encoder-decoder architecture [17]. This step
is usually performed to compress the information into a
smaller subspace to simplify the learning process, which
otherwise will be more prone to local minima in the presence
of redundant and unexplored state information.

In this work, we follow this same reasoning by condensing
the VFA heuristics criteria detailed in Sec. II to give the
policy a model-based prior on the footholds’ safety. We
perform regression via supervised learning by employing a
denoising convolutional encoder-decoder style architecture,
which we call as SaFE-Net (Safe Foothold Evaluation Net-
work) to compute a fast and precise segmentation of the
foothold heightmap H . The encoder of SaFE-Net consists of
a Convolutional Neural Network whose output is linearised

and appended with some state information required to infer
the safety of the foothold, followed by a linear layer, whose
output is the encoded representation hsafe. The decoder con-
sists of a linear layer, and its output is further reshaped and
deconvolved to obtain a segmentation map µ̂safe where each
cell corresponds to each foothold’s safety. Fig. 3 provides a
visual description of the architecture of SaFE-Net mentioned
above.

To train SaFE-Net, we collect our heightmap dataset
in RaiSim [19] over different rough terrain scenarios (see
Fig. 1). It consists of the foothold heightmap of the leg
in swing H , the subsequent safety evaluated using the
heuristics µsafe, the gait phase of the leg in swing ϕ, the
linear and angular velocities bvcom and bwcom of the center
of mass. We minimise a combination of the Binary Cross-
Entropy [20] (BCE) and Generalized Dice [21] losses, such
as

LBCE =
1

N

N∑
i=1

((µ̂i log σ(µi + (1− µ̂i) log(1− σ(µi))

Ldice = 1− (2 ·
∑N

i=1(µiµ̂i)∑N
j=1 µj +

∑N
d=1 µd

)

where µ̂i and µi are respectively the single element network’s
prediction and ground truth for the i-th element of the
matrices µ̂safe and µsafe; N is the number of elements
in the flattened matrix H , and σ represent the sigmoid
activation function. This combination of losses is commonly
used in segmentation tasks to consider pixel-wise accuracy
and global spatial coherence. The binary cross-entropy loss
encourages accurate predictions at the pixel level, while the
dice loss encourages spatially coherent segmentations by
penalizing false negatives and false positives.

SaFE-Net provides two important components that form
the basis of safety for training the subsequent footstep policy.
The encoded representation of the heightmap, hsafe, which
inherently embeds safety and is deployed as an additional
state to the RL agent, and the segmented safety map µ̂safe,
which is used for action masking as described in the follow-
ing section.



B. Footstep Planning Policy

The RL agent, acting as a centralized planner, determines
the optimal footstep positions exclusively for the legs in
swing, with the agent being queried only twice during this
phase. These are during the lift-off of the foot and when it
reaches the apex of the swing trajectory, which is generated
by a separate model-based module. No more additional
corrections are computed after the apex in order to avoid
aggressive tracking maneuvers which can destabilize the
robot’s motion.

The following describes the policy’s state space, action
space, the adopted safety masking procedure, reward func-
tions, and training strategy.

1) State: The policy of our foothold adaptation strategy
has states that represent both proprioceptive (xprop) and
exteroceptive (xext) information, such as

xprop = (bvusr
com,

bwusr
com,

bvcom,
bwcom, qhist, R, ϕlegs, aprev)

xext = hlegs
safe

where qhist ∈ R24·t is a sparse representation of t past
joint position and velocity values, which helps to reconstruct
possible disturbance during motion; R ∈ R3×3 is a rotation
matrix for retrieving the roll, pitch, and yaw of the robot;
ϕlegs ∈ R4 is a vector of phase variables; finally, aprev is the
previous action from the policy and hlegs

safe ∈ R32·4 is obtained
by stacking the encoded representations from SaFE-Net for
the heightmaps of each leg.

2) Actions: The output of the policy is defined over
a multidimensional continuous action space, where each
possible action ai is responsible for a precise xy-foothold
coordinate for the i-th leg in the swing. In our case, the robot
is constrained to perform a trotting gait. Hence only two legs
can lift simultaneously, and the policy output a ∈ R4. The
gait phases vector ϕ helps the policy to understand which
legs can be commanded at the current time instant.

3) Safety Masking: After querying the agent, the con-
tinuous actions are converted to exact discrete foothold
choices in the heightmaps Hi of the i-th legs currently in
swing. One can normally assign a negative reward signal
for each unsafe foothold choice to encourage safe foothold
candidates. This approach, however, does not provide any
safety guarantee for the policy to sample safe actions, even
after the training procedure. Furthermore, unsafe foothold
selections can happen rarely during training, hardening the
optimization problem [22]. To bypass the above limitations,
we additionally employ an invalid action masking strategy to
constrain the possible foothold’s choice. Both during training
and deployment, the output of SaFE-Net is employed to
modify the action given by the policy if it is flagged as unsafe
by choosing the nearest foothold marked safe in µ̂safe.

4) Reward Functions: Given the safety criteria considered
in this work, we decided to employ a small set of reward
functions to describe the desired behavior of the robot.
These terms are related to the tracking performance of the
user-commanded linear velocities bvusr and a regularization

behavioral component, defined respectively by the following
functions:

rtrack = exp

(
− (bvusr

com − bvcom))

0.2 · (1 + |bvusr
com − bvcom|)

)2

rreg =

Nswing∑
i=1

||Hi(ai)− pi
foot||

where, in rreg, Hi(·) is the foot position in the i-th heightmap
proposed by the policy ai converted to the corresponding
discrete values, and pi

foot is the nominal foot position (1)
at the center of the heightmap. Both these values refer to
the i-th leg in swing. This reward term helps to stabilize the
learning progress since we know that (1) is a good prior in the
case of blind locomotion. Furthermore, we add some terminal
sparse negative reward rterminal in the case of self-collision or
other catastrophic behavior, such as hitting the ground with
the trunk or exceeding some pitch and roll thresholds, and a
negative constant reward in the case ai is converted to unsafe
footholds.

5) Training Procedure: We trained our agent by applying
external disturbances during random intervals to the CoM by
sampling randomly in the range [−35N, 35N], both in the
longitudinal and lateral direction of the robot. We applied a
curriculum strategy to increase the difficulty of the terrain
and external disturbances during training. Furthermore, the
terrain properties are randomized, and a new environment is
sampled on every episode reset to encourage generalization.
By employing PPO in the same simulation environment
described in Sect. III-A, this training procedure is performed
sequentially after a satisfactory precision of SaFE-Net is
achieved.

C. Model Predictive Control

To actuate the optimized foothold position chosen by the
policy, we employ a well-studied formulation used for the
real-time motion planning and control problem known as
a Model Predictive Control (MPC). The formulation we
utilized implements a linearized reduced order model to
approximate the robot dynamics, called the Single Rigid
Body Model (SRBM), which has shown its effectiveness,
especially in the case of quadruped robots [23] where the
inertia of the legs can be usually neglected. Using this
approximation, the system dynamics can be written as

p̈com =
1

m

nleg∑
i=1

f i + g

Ṙ = Rbŵ R ∈ SO(3)

bIbẇ = RT (

nleg∑
i=1

r̂if i)− bŵbIbw

(2)

where p̈com is the center of mass acceleration f i is the
Ground Reaction Force (GRF) acting on the i-th leg, Ṙ is
the derivative of rotation matrix between the world and the
robot base, while w and ẇ are the angular velocity and
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Fig. 4. Median and variance of the linear (x-y) and angular (yaw) velocities tracking errors with and without the presence of external disturbances. These
results were obtained by commanding the robot with different longitudinal velocities in the range of +/- 0.3 m/s.

its derivative. ri is the vector connecting the base and foot
ri = Hi(ai) − pcom, the operator (̂·) maps the vector to
a screw-symmetric matrix. Finally, I and m are the inertia
matrix and mass of the robot body, and g is the gravity vector.
Eq. (2) is non-linear in the angular part. We use the variation-
based linearization scheme presented in [24]. We express the
rotational error in the SO(3), considering the variation to the
operating point to be free from singularities in the represen-
tation. We then perform a first-order Taylor expansion of the
matrix exponential to then vectorize the error expressed in
SO(3) as ξ ∈ R3 such that ξ̂ = δR. The linearized dynamics
is finally discretized using the forward Euler scheme. The
system state is defined as x =

[
pcom, ṗcom, ξ,

bw
]
∈ R12

and the control input as u = [f1,f2,f3,f4] ∈ R12. Given
the simplified model, system state, and control input we can
define the optimal control problem (OCP) as:

min
x,u

LT (x(N)) +

N−1∑
k=0

L(xk,uk)

s.t. xk+1 = Akxk +Bkuk + ck

uk ∈ Uk

k = 0, 1, ..., N − 1

xk=0 = xop

(3)

where L(x(·)) is a convex quadratic cost over the user
commanded velocities bvusr

com, bwusr
com and body posture.

Ak,Bk, ck are the linearized dynamics, and Uk is the set
of feasible ground reaction forces constrained by the outer
pyramid approximation of the friction cone to guarantee non-
slipping conditions. xop is the state variable at the operating
point. To solve the OCP problem we used a specialized
quadratic programming solver [25], that exploits the sparse
structure of the problem. Finally, the GRFs obtained by
solving the optimization problem (3) are then converted into
motor torques by applying

τ = −J⊤(q)u

where q is the vector containing the actual robot joints
position, and J(·) is the contact jacobian.

IV. RESULTS

The proposed approach has been validated through simu-
lations on Aliengo [1], an electric quadruped robot developed

by Unitree. In the following, we show simulation results by
comparing three different approaches, which are

1) MPC-VFA (baseline): the optimal foothold is chosen as
described at the end of Sect. II;

2) RL-VFA: where we employ the masking procedure
explained in Sect. III-B, encoding the safety information
both in the policy input and output space;

3) Naive-RL: where the safety information is only encoded
in the reward function as in the work of RLOC [17].

To minimize the considered safety violations in the naive
RL approach (3), we added some additional reward terms.
Specifically, we designed two negative sparse reward terms
in the case of kinematic violations and shin collisions, and a
distance-based reward term if the chosen foothold is placed
near a terrain edge. For the last computation, we use the same
TR heuristic explained in Sect. II. Furthermore, similar to the
footstep policy in [17], we fed to the naive RL approach
(3) an encoded representation of the heightmap (without
providing any safety information) using a convolutional
autoencoder architecture which was trained using the same
heightmap data collected for SaFE-Net. The two policies
mentioned above use the same training strategy as explained
in Section III-B and an extensive hyperparameter search has
been applied using Optuna [26] to optimize their results.

In the following, we want to highlight the benefit of
employing a learned footstep planning policy within a model-
based control framework and the performance increment that
can be achieved by explicitly considering safety information.
For this, we tested the robot over irregular and randomized
terrains and averaged the obtained results over 100 episodes
(each of them consisting of 250 footstep placements).

In Fig. 4, we compare the two learning methods against
MPC-VFA, showing the linear and angular velocity tracking
error evcom, ewcom, achieved with and without the application
of additional external disturbances. As shown in the fig-
ures, RL-VFA is able to achieve better results (in median
and variance) compared to the other methods, reaching a
mean reduction in the x and yaw tracking error of ≈20%
compared to the baseline. A similar result can be observed
in the presence of external disturbances due to the ability
of the policy to recover faster after a push. Similarly, the
simpler naive implementation of RL is able to achieve good



tracking performance compared to the baseline. However,
given the additional reward terms and the intrinsic difficulty
in achieving the global optimum, this method achieved worse
performance compared to our approach.

This difficulty is clearly visible in the next result. To
show that the proposed method can enable robust locomotion
in the presence of severe disturbances, we analyzed the
external forces at the CoM level withstood by all three
methods (Fig. 5) applying them for a duration ranging from
1 to 3 seconds. The previous analysis can be applied here
as well. Similar results are depicted in Fig. 6 where we
plot the success rate (i.e. percentage of episodes that do
not terminate with a body collision) achieved by all three
methods during training. Here we superimpose the result
coming from three of the best hyperparameters found during
our extensive hyperparameter search. The outsourcing of
the safety information enables both better sample efficiency
and a more robust locomotion. The last can be observed in
the accompanying video, where shin collisions, kinematic
violations, and slippage over terrain edges clearly require
additional effort from the locomotion controller.

Lastly, we compare in Table I how the defined safety
conditions hold in our approach and in the naive RL policy
case. For this, we test both agents at the beginning of their
training (10000 steps) and at their last episode (4000000
steps), and we calculate the percentage of safety violations
over 100 episodes. Our approach consistently outperforms
Naive-RL, especially in the case of terrain violations, where
footholds are placed near a terrain edge ≈100 times more
often compared to our approach. The same situation emerges

Fig. 5. Disturbance rejection analysis over external forces in the range
[−35N, 35N]. Lighter squares depict higher robustness (zero episode ter-
mination in white).

0M 0M 1M 1M 2M 2M 3M 3M 4M

Training Step

0

20

40

60

80

100

S
u

cc
es

s
R

at
e

(%
)

RL-VFA

Naive-RL

Baseline

Fig. 6. Comparison of the episode success rate of Naive-RL and RL-VFA
using three different hyperparameters during training on irregular terrains
with fixed disturbances (+/-35N in the x-y directions) applied at random
intervals. To highlight the benefit of a learned footstep policy, we plot the
mean results obtained by the baseline (MPC-VFA).

in the case of shin collisions, where we achieved a reduction
rate of ≈10x. Still, some violations remain even in our
case given the inevitable classification error of SaFE-Net.
These results can be explained by analyzing the number
of violations of RL during the policy evaluation at the
beginning of training: shin collision and kinematic violations
are represented by sparse events, over which optimization
is inevitably complicated. Given the sparse nature of these
criteria, simply penalizing such actions that cause violations
as in [17] is not necessarily sufficient to learn to avoid them.
Furthermore, we want to highlight how there is no significant
difference in the number of safety violations between the
training episodes in our approach, since, given our masking
procedure, their enforcement is not hinged on any particular
learning curve.

The reader can refer to the accompanying website* for the
videos of the above results. Furthermore, in the videos, we
show another simulation on Gazebo [27] and experiments
on the real robot to prove that our method does not suffer
from any particular domain adaptation problem. For this,
we trained our policy by randomizing the robot’s mass and
inertia, and we added noise both to the MPC and to the policy
states. Even in this case, we obtain similar comparative
results to the ones described in this section.

V. CONCLUSIONS

In this paper, we have proposed a method for imposing
safety constraints to a learned footstep planning policy via
external model-based priors. The method hinges upon our
visual foothold adaption technique (VFA) which classifies
unsafe footstep locations by analyzing their kinematic fea-
sibility, shin collision, and vicinity to terrain edges, infor-
mation that is then used by the policy to plan only safe
footholds.

*Videos at: https://sites.google.com/view/safe-steps-rl

https://sites.google.com/view/safe-steps-rl


The proposed approach was statistically validated in sim-
ulation and tested on a real quadrupedal robot. In particular,
numerical simulations of our method show that a low number
of violations of the imposed safety conditions happen during
training, resulting in an inherently safer footstep planning
policy. Furthermore, we show how this approach is able to
attain better final performances compared to standard RL
approaches, thanks to a reduced number of reward functions
needed to shape the behavior of the policy.

An interesting feature of the presented work is that
additional constraints can be easily incorporated into the
pipeline at demand just by modifying the training data for
the encoder-decoder network. Given this feature, future work
will consider the problem of coupling the proposed approach
with dynamic constraints during the entire learning transient,
for example, by explicitly taking into consideration criteria
based on the Zero Moment Point [28] or the Instantaneous
Capture Point [29], in order to increase the final robot’s
performance.

TABLE I
PERCENTAGE OF SAFETY VIOLATIONS OVER 100 EPISODES

Policy Terrain (TR) Leg (LC) Kinematic (KF)

RL-VFA (@10K steps) 0.9 0.7 0.8

RL-VFA (@4M steps) 0.6 0.3 0.6

Naive-RL (@10K steps) 48.4 5.8 1.77

Naive-RL (@4M steps) 36.5 4.5 1.5
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