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In this paper we describe the steps that allowed us to realize real outdoor exper-

iments of HyQ bounding at different speeds and performing omni-directional
maneuvers. The strategy is composed of two parts: the first one is an offline

optimization that finds a stable periodic limit cycle which represents the base-

line bounding gait; the second part is a speed controller that adjusts online the
main gait parameters based on the high-level speed commands coming from the

external operator. In the tests HyQ reached a forward speed of 2.5m/s, lateral

speed of 1m/s and angular speed of 50deg/s in simulation and respectively
1m/s, 0.5m/s and 30deg/s on the hardware experiments.
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1. Introduction

Despite the extensive research on legged locomotion there exists still a rel-

evant gap between the agility of quadrupedal animals and their robotic

counterparts. From the hardware point of view this gap is due to the lack

of resistant yet compliant limbs, high power/weight ratio actuators and

precise sensors. From the software point of view, instead, one of the main

shortcomings lies in the lack of a universal stability criterion that allows to

plan joint trajectories and feed-forward torques in a computationally effi-

cient manner and for arbitrary movements.

Related work: many implementations in the last decades have already shown

legged robots with impressive dynamic capabilities in performing hops,

jumps and dynamic gaits starting from Raibert’s hoppers and quadrupeds.1

Advanced studies on omni-directional bounding gait have been carried
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out on the Scout II2,3 robot and, in simulation, on KOLT4 and HyQ.5

Recent improvements in the bounding gait have been obtained on the

MIT cheetah which has achieved impressive results managing to online

replan and jump obstacles while bounding and to gallop even in the pres-

ence of relevant changes in the terrain height.6 Optimization based ap-

proaches to achieve agile motions such as bounding have also been shown

on StarlETH.7 An analysis on the benefits of an active spine for turn-

ing maneuvers while bounding has been carried out on the Bobcat-robot.8

Fig. 1. HyQ, the hydraulic quadruped
robot of IIT.

The contribution of this paper lies

in the combination of a Zero Mo-

ment Point (ZMP) based strategy

for enhancing the lateral stability

of a quadruped robot during the

front/hind stance phases with the

periodic limit cycle approach used

to discover a stable bounding gait.

This allows us to show real out-

door experiments of HyQ, IIT’s

80 kg hydraulic torque-controlled

quadruped robot9 (Fig. 1), per-

forming omni-directional bound-

ing. A minor contribution is also a

module for the online replanning of the feet trajectories given the trunk’s

state which we call linear kinematic adjustment.

This document is organized in the following way: we illustrate in Section 2

a lower dimensional planar model of the robot used to achieve a stable pe-

riodic bounding gait. Section 3 describes the design of the linear speed and

turning controllers. In Section 4 we present the results of the simulations

and hardware experiments carried out on HyQ. In Section 5 it follows the

final discussion where we also draft future development directions.

2. Baseline optimization

We employ the simplified planar dynamic model portrayed in Fig. 2(a). The

state of the robot’s center of mass (CoM), where we consider the lumped

mass m of the robot to be placed, is defined by its planar coordinates

wxcom = [x, z, θ]T . The base position is instead denoted by wxb. The forces

Ff = [Ffx, Ffz]
T and Fh = [Fhx, Fhz]

T represent the desired ground re-

action forces (GRFs) of front and hind legs, respectively. Their lever arm

with respect to the CoM of the trunk is denoted by lf = [lfx, lfz]
T and
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Fig. 2. (a) Low dimensional dynamic model of HyQ in the sagittal plane; (b) impulse-

shaped feed-forward forces at the feet.

lh = [lhx, lhz]
T . The resulting equations of motion are:

mẍ = Ffx + Fhx
mz̈ = −mg + Ffz + Fhz
Iθ̈ = lf × Ff + lh × Fh = Ffxlfz + Ffzlfx + Fhxlhz + Fhzlhx

(1)

where I is the lumped inertia of the whole robot. If we assume the

quantities lf and lh to have constant values lf , lh then the equations 1 are

therefore linear in the contact forces Ff and Fh. We enforce the impul-

sive nature of these contact forces during the bounding gait by imposing,

through a time-variant function g(t), Ff and Fh to take on an impulse-like

shape defined by 4th order Bézier curves as in Fig. 2(b). These curves fit

well with the experimental data of the GRFs created by humanoids10 and

quadrupeds. The integral of the overall feed-forward forces over the stance

time Tst are the impulses Jf and Jh.

Jf =

∫ Tst

0

Ff (t)dt =

∫ Tst

0

g(t)afdt Jh =

∫ Tst

0

Fh(t)dt =

∫ Tst

0

g(t)ahdt

(2)

The impulses Jf = [Jfx, Jfz]
T and Jh = [Jhx, Jhz]

T for a fixed Tst depend

only on the amplitude of the force profiles af = [afx, afz]
T and ah =

[ahx, ahz]
T (see Fig. 2(b)). The determination of the value of these constant

amplitudes is the goal of subsection 2.1.

2.1. Discovery of the periodic limit cycles

We intend to solve a boundary value problem (BVP) where the optimiza-

tion variables are af and ah besides the initial pitch θ0 and pitch rate θ̇0.

Moreover, we enforce periodicity by imposing the final and initial states sT
and s0 to be equal: s0 = sT . The state s is the concatenation of wxcom and

wẋcom: s = [wx
T
com,w ẋTcom]T = [x, z, θ, ẋ, ż, θ̇]T . Given the desired height

at the apex of the flight phase zapex, we can compute the expected swing
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time Tsw = 2
√

2zapex

g and the other dependent parameters of the gait such

as the cycle time T = Tsw + Tst, the flight time Tfl = T−2Tst

2 and the duty

factor D = Tst/T .

In the direct multiple-shooting approach11 the goal is to discretize the states

from t = 0 to t = T into N sub-intervals t = k/N with k = 0, 1, 2, . . . N .

u is nothing but the set of the amplitudes af , ah which remains constant

throughout the cycle period u = [aTf ,a
T
h ]T = [afx, afz, ahx, ahz]

T . The state

s is instead a [6×N ]-dimensional vector ŝ = [s0 . . . sk . . . sN ]. The dynamic

equations in 1 can then be expressed as sk+1 = f(sk,uk). In our analysis

we use N = 400 samples on a cycle time of T = 0.4s for an integration step

of dt = 0.001s.

The goal is to minimize the cost function L(θ0, θ̇0,u) over each gait cycle:

y∗ = min
θ0,θ̇0,u

L(θ0, θ̇0,u) = min
θ0,θ̇0,u

N∑
k=1

(θ2k + θ̇2k + uTk uk) (3)

s.t.:

(a) continuity: sk+1 = f(sk,uk)

(b) periodicity: s0 = sT

(c) Bézier force profile: Fk = gkuk
(d) saturation: umin ≤ uk ≤ umax

The term u in the quadratic cost function L(θ0, θ̇0,u) is employed in

order to limit the amplitude of the impulses and, as a consequence, the

torque required to the actuators. The reason for adding θ0 and θ̇0 to the cost

function stems from the need of respecting the friction cone constraint: even

if a relevant trunk oscillation is a characterizing feature of the bounding gait

we still want to avoid extreme motions of the pitch that may require too

large horizontal forces to keep the bounding in place.

The constraint (c) is nonlinear because it describes the impulse-shaped

profile of the feed-forward forces. The optimal control problem was therefore

solved with the nonlinear solver IPOPT using the CasADi interface.12

We found a set of solutions y∗ corresponding to different values of the input

parameter Tst in the range between 50ms and 300ms and analyzed the

stability of these different periodic limit cycles obtained (see Fig. 3 (a)).

This analysis shows that all the eigenvalues λi of the discrete linearized

Poincaré map have a magnitude larger than 1 (λi > 1) meaning that the

found periodic limit cycles are open-loop unstable for all the analyzed duty

factors D. The optimized impulses are then used as feed-forward torques

at joint level where it is possible to show that the necessary stabilization

can be performed by exploiting the active impedance in joint space. We do

not report the details here for the sake of brevity.
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Fig. 3. (a) Periodic limit cycles for different values of Tst; (b) feet trajectory generation.

3. Speed and turning control

The obtained desired foot, CoM and base trajectories (wx
d
f ,w ẋdf ),

(wx
d
com,w ẋdcom) and (wx

d
b ,w ẋdb) are computed in the world frame Wf . They

need to be mapped into the base frame Bf before they get fed into the

inverse kinematics and finally become joint trajectories. We make use of

an intermediate reference frame named horizontal frame Hf which shares

the same origin and yaw angle with Bf but it is aligned with gravity g.

The mapping is therefore a cascade of a linear translation wtb from Wf to

Hf , called linear kinematic adjustment, and a rotation bRh from Hf to Bf
called angular kinematic adjustment (first introduced in Barasuol et al.13).

The peculiarity of this transformation lies in the use of the actual state of

the robot rather than the desired state. In the case of the linear kinematic

adjustment we will have: {
hxdf =w xdf −w xb

hẋ
d
f =w ẋdf −w ẋb

(4)

This allows to ensure e.g. the desired foot clearance even when the

trunk is not in the expected configuration enhancing the tracking of the

feet trajectories. Equation 4 requires the knowledge of the base position in

Wf . This is not easy to obtain, especially when slippage may occur or the

flight phase may last slightly longer or shorter than expected. To mitigate

the dependency on the state estimation we reset the world frame Wf to be

coincident with Hf at the latest apex state (i.e. when hż
h
b = 0). In such way

we neglect the accumulated errors of the past gait cycles (see Fig. 3(b)).

3.1. Speed controller

We implemented a speed controller that creates at each gait cycle an offset

in the overall linear and angular momentum that propels the robot in the
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Fig. 4. HyQ bounding in place in IIT’s lab. with a duty factor of D = 0.45

desired direction. The optimal values of a∗i (where i is the leg index: i =

{LF,RF,LH,RH}) are modified to ai with the following strategy:

• angular speed control: aiy = a∗iy + Kd,ψ(ψ̇d − ψ̇)/hxfi where hx
d
fi

is the x coordinate of the ith foot;

• forward and lateral speed control: aix,y = a∗ix,y +Kd,ẋ(hẋ
d
b −h ẋb)
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Fig. 5. (a) Yaw controller performance from experimental data; (b) frontal section from

the back of HyQ performing a turn to the right subject to centrifugal forces.

The higher the forward speed hẋb 6= 0 the more important it becomes to

take the centrifugal acceleration acf into account (see Fig. 5(b)) acf = hẋb
2

r

where r is the instantaneous radius of curvature r =h ẋb/ψ̇
d. The quantity

acf will cause a shift of the ZMP outwards with respect to the turn, thus

reducing the lateral stability margin represented by the distance s between

the ZMP and the foot along the support line of the double stance phase.

This also results in unloading the internal leg during the turn. Our strategy

consists in moving the feet laterally by an offset ∆yf to restore the desired

lateral stability margin s∗ and, as a consequence, to re-equilibrate the force

distribution between the two stance legs. As a consequence of this offset

∆yf = (acfh)/g the legs will take on a certain leaning angle:

ϕlean = atan(
∆yf
h

) (5)
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where h is the height of the CoM of the robot. The legs then align with the

contact forces (whose lateral component compensates for acf ) and no extra

torque is applied on the Hip Abduction/Adduction joints (see Fig. 5(b)).

Furthermore, it is favorable in terms of energy efficiency to roll the trunk

by the same leaning angle4 s. t. φ = ϕlean. The legs, in this way, get aligned

with the main axis of the frontal section of their manipulability ellipsoid.

4. Simulated and Experimental Results
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(a) Physics based simulation
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(b) Hardware experiments

Fig. 6. (a) simulated and (b) experimentally measured actual vs. desired GRFs in the

two upper plots. Pitch and duty factor are instead shown in the lower plots.

Plots of the collected data both during simulated bounding and the

hardware implementation are given in Fig. 6. The first two plots above show

the frontal Fx and vertical Fz feed-forward forces and the corresponding

ground reaction forces. The lower plot shows the pitch evolution and the

measured duty factor. The use of the kinematic adjustment significantly

mitigates the spike at touch down which is due to the non zero vertical

velocity of the feet at the end of the legs extension phase. Thanks to the

linear kinematic adjustment (Section 3) the effects on the feet of the trunk’s

dynamics are cancelled out and the vertical velocity of the feet is strongly

reduced, resulting in a softer touch down.

The limit cycle periodicity of the pitch and the almost constant duty factor

shown in the lower plot of Fig. 6 demonstrate that the system is successfully

stabilized. In Fig. 4 you can see for three snapshots of HyQ bounding in

place with a short flight phase in the middle frame.

4.1. Yaw Controller

Fig. 5(a) shows the performance of the yaw controller over a period of 180s

during which the robot runs at constant speed of 1m/s and varies its angular

velocity between ±20deg/s. In the lower plot it can be seen that the yaw er-

ror remains lower than 4 degrees throughout the time interval. Experimental

results can be found in following link: https://youtu.be/005BMWixqsQ.

https://youtu.be/005BMWixqsQ
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5. Conclusion and future works

We implemented a bounding gait of the HyQ quadruped robot which is able
to reach a wide range of linear and angular speeds. In the future we intend
to test the robustness of our approach with different ground stiffnesses and
damping, with consistent changes in the terrains level and slopes.
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