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Feasible Region: an Actuation-Aware Extension of
the Support Region

Romeo Orsolino1,2, Michele Focchi1, Stéphane Caron3, Gennaro Raiola1,4, Victor Barasuol1,
Darwin G. Caldwell1 and Claudio Semini1

Abstract—In legged locomotion the projection of the robot’s
Center of Mass (CoM) being inside the convex hull of the contact
points is a commonly accepted sufficient condition to achieve
static balancing. However, some of these configurations cannot be
realized because the joint-torques required to sustain them would
be above their limits (actuation limits). In this manuscript we rule
out such configurations and define the Feasible Region, a revisited
support region that guarantees both global static stability in the
sense of tip-over and slippage avoidance and of existence of a
set of joint-torques that are able to sustain the robot’s body
weight. We show that the feasible region can be employed for
the online selection of feasible footholds and CoM trajectories
to achieve statically stable locomotion on rough terrains, also
in presence of load-intensive tasks. Key results of our approach
include the efficiency in the computation of the feasible region
using an Iterative Projection (IP) algorithm and the successful
execution of hardware experiments on the HyQ robot, that was
able to negotiate obstacles of moderate dimensions while carrying
an extra 10 kg payload.

Index Terms—legged locomotion, multi-contact motion plan-
ning and control, dynamics, optimization and optimal control.

SUPPLEMENTARY MATERIAL

• Video of simulation and hardware results is available at:
https://youtu.be/9pvWO2Qmo9k

• Code available (python) at:
https://github.com/orsoromeo/jet-leg
(with source code used for Figs. 6 and 8).

I. INTRODUCTION

Most state-of-the-art strategies employed for the online
motion planning of legged robots work well only under
the assumption that the joint-torque limits do not affect the
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Fig. 1: HyQ robot walk with overlaid classical support region
(dashed line) and local Feasible Region (green).

locomotion capabilities of legged robots. This assumption is
due to the computational limitations of modern processors
that compel to trade-off between the size of the motion
planner’s predictive horizon and the accuracy of the considered
dynamic model. In order to enlarge the predictive horizon of
motion planner for legged robots, therefore, researchers have
developed low dimensional (i.e., simplified) dynamic models
[1] with corresponding stability criteria [2]. Such stability
criteria focus on avoiding slippage and tip-over [3]. They are
usually characterized by a reference point and a stability region
in which the reference point has to lie in order to meet the
necessary stability condition. The distance of the considered
reference point from the sides of the stability region is used
to evaluate the robot’s robustness in static and dynamic gaits.

Renowned 2D examples of such reference points are the
CoM projection cxy , the Zero-tilting Moment Point (ZMP) z
[4] and the more recent Instantaneous Capture Point (ICP) ξ
[5]. These 2D reference points represent meaningful descrip-
tors of the system for, respectively, static (neither system’s
velocity nor accelerations are considered), semi-dynamic (only
instantaneous acceleration explicitly considered) and fully
dynamic gaits (both instantaneous velocity and acceleration
explicitly considered). Furthermore, the ZMP and the ICP
(both derived by the definition of linear inverted pendulum
[6]) only hold in presence of co-planar contacts. Higher di-
mensional reference points have been defined to consider also
the vertical and angular accelerations such as, respectively, the
3D virtual repellent point [7] and the 6D aggregated centroidal
wrench [8].

As regards the possible definitions of stability region, in-
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stead, the support polygon, defined as the convex hull of the
contact points, is the most widespread. It is always valid in
presence of co-planar contacts for both static and dynamic
gaits and it can, therefore, be used in combination with the
CoM projection, the ZMP or the ICP. It was proved, however,
that the support polygon is not valid in multi-contact scenarios
and a new definition, called support region, was provided [9],
[10]. Such definition, however, only holds for the evaluation
of static postures on arbitrary terrains, for which reason the
support region cannot be combined with ZMP or ICP, but
only with the CoM projection cxy . A dynamic extension of
the support region requires to resort to higher dimensional
spaces such as 3D volumes [11] or 6D sets [12], [13].

In all of the above mentioned stability criteria, the reference
points capture the main dynamics of the robot’s CoM, while
the stability regions depend on the location of the contact
points, the orientation of the surface normals and on the
friction coefficients. Extensions have been made in order to
include in the lower-dimensional stability analysis also other
feasibility constraints such as the kinematic limits of legged
systems [14], [15]. Joint-torque limits, however, have only
been mapped into the 6D wrench space [16], but never into
the 2D space of the support region.

In this manuscript we focus on the definition of a 2D
stability region that includes the joint-torque limits and, be-
cause of the static assumption that it involves, it can be used
in combination with the CoM projection for the generation
of static locomotion for legged robots on complex geometry
environments. To the authors’ knowledge this is, therefore, the
first example of how a two dimensional feasibility criterion can
explicitly consider the actuation constraints of the system.

The efficient computation of the proposed feasible re-
gion, enables the concurrent online optimization of actuation-
consistent CoM trajectories and foothold positions in rough
terrains.

Besides its computational efficiency, the feasible region can
be easily represented in 2D, thus representing an intuitive tool
for motion planning. This allows us to give a clear and simple
answer to legitimate questions like: how does the maximal
step length change with the increase of the robot’s mass? And
also: which is the height of the highest step that a robot can
step on given its body mass and maximal joint-torque/force
capabilities?

A. Contributions

In this manuscript we attempt to give an answer to the above
questions in the following way:

1) We introduce the feasible region, a 2D horizontal convex
set that includes all the positions of the CoM projection
that are guaranteed to be statically stable and actuation-
consistent. This 2D area provides an intuitive yet pow-
erful understanding of the relationship between the task-
space locomotion capabilities of a robot and its joint-
space actuation limits;

2) We introduce a modified version of the IP algorithm,
initially proposed in [9], able to efficiently compute the
feasible region (in about 15ms);

3) We employ the proposed feasible region to formulate
a motion planning algorithm for legged robots, able to
optimize online static trajectories of the CoM projection
and footholds on arbitrary terrains for predefined step
sequences and phase durations. We report the results of
our hardware experiments which show that our motion
planner can adapt the footstep locations and the trajectory
of the robot’s CoM to the terrain geometry by replanning
in a receding horizon fashion at about 15 Hz.

B. Outline

The two core building blocks of the work developed in
this manuscript are the wrench (or force) polytopes and the
IP algorithm which are briefly recalled in Sec. II. Using the
described elements we formulate the local actuation region
Ya and the local feasible regions Yfa in Sec. III. The latter,
in particular can be seen as a revisited definition of the
well known support region. Section IV presents examples of
how the feasible region can be employed to achieve online
replanning of CoM and feet trajectories on arbitrary terrains
using the height map provided by the robot’s exteroceptive
sensors. Simulations and experimental results on the HyQ
quadruped robot (see Fig. 1) are finally presented in Sec. V.
Section VII draws final conclusions regarding the concepts
presented in this manuscript, raises some possible discussion
point and anticipates possible future developments.

NOTATION

List of the most relevant symbols used in this manuscript:

n Number of actuated joints of the system
N Degrees of Freedom (DoFs) of the system
nf Branches of the tree-structured robot
nc Number of contacts
nl Actuated joints of one individual branch
i Limb index

ni Degrees of motions of the ith joint.
m Dimension of the contact wrench

c ∈ R3 Center of Mass (CoM) position

pi ∈ R3 End-effector position (hand or foot)
fi ∈ Rm Wrench
τ ∈ Rn Joint-space torques

q ∈ SE(3)× Rn Point in robot’s configuration manifold

q̇j ∈ R6+n Joint-space velocity
qi ∈ Rnl Joints configuration of one single branch

s ∈ R6+n Vector of generalized velocities

I3 ∈ R3×3 Identity matrix
Yf Support (or friction) region
Ya Actuation region
Yfa Feasible region
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Acronyms:

CWC Contact Wrench Cone
AWP Actuation Wrench Polytope
FWP Feasible Wrench Polytope

IP Iterative Projection

II. BACKGROUND

A. Wrench Polytopes for Fixed Base Systems

Actuator force/torque limits and their consequences on the
overall performance in the task space have been analyzed for
decades in the field on mechanical industrial manipulators
[17], [18], [19] and, more recently, also on cable driven parallel
robots [20] and robotics hands [21].
Wrench ellipsoids (or hyperellipsoids) have been identified as
useful tools to assess the control authority at the end-effector
of serial mechanical chains. Being always obtained from a
hypersphere of unit radius, such ellipsoids do not hold any
information relative to the absolute magnitude of the wrench
that a mechanical chain can exert. They can be obtained as
a consequence of the kinetic energy theorem (or work-energy
theorem) that states that the work done by all forces acting
on a particle equals the rate of change in the particle’s kinetic
energy [22, p. 148]. This leads to the following:

τ = J(q)Tw (1)

which represents a static relationship between the generalized
task-space wrenches w ∈ Rm and the generalized joint-
space forces τ ∈ Rn. The matrix J(q) ∈ Rm×n is the end-
effector Jacobian. If we consider (1) in combination with a
unit hypersphere Sτ in the joint-torque space:

Sτ =
{
τ ∈ Rn | τT τ ≤ 1

}
(2)

we can then obtain a new set (the wrench ellipsoid) Ew that
describes how Sτ is mapped into the task-space:

Ew =
{

w ∈ Rm | wTJJTw ≤ 1
}

(3)

By definition, the force ellipsoid Ew represents the pre-image
of the unit hypersphere Sτ in the joint space under the mapping
given by J(q)T . The lengths of the semiaxes of Ew correspond
to the singular values of the Moore-Penrose pseudoinverse
of J(q) [23, p.285]. The ratio between the greatest and the
smallest eigenvalue of J(q) is, therefore, used as a measure
of anisotropy of the ellipsoid and of the force amplification
properties of the mechanical chain.

In a similar fashion, further exploiting (1), we can then
also analyze the pre-image of the joint-torque hypercube
Zτ , i.e., the set of all joint-torques τ comprised within the
manipulator’s actuator limits τ lim:

Zτ =
{
τ ∈ Rn | τ ≤ τ ≤ τ

}
(4)

The vectors τ = −τ lim ∈ Rn and τ = τ lim ∈ Rn contain
in their elements the hardware-dependent lower and upper

(a) Unit sphere mapping into a wrench ellipsoid

(b) Zonotope mapping into a wrench polytope

Fig. 2: The mapping between joint-space torques and the task-
space forces at the end-effector. In this example, the dimension
of joint-torque space dim(Zτ ) = dim(Sτ ) = n = 3 is
equal to the dimension of the manifold of the contact forces
dim(Pw) = dim(Ew) = m = 3. The index i = 0, . . . , nl
represents the limb’s index while k = 0, . . . , 2n represents the
vertices’ index.

bounds of the values that limit the generalized joint-torque
vector τ 1.

The hypercube Zτ can be seen also as a system of 2n linear
inequalities that constrain joint-torques [19] (see Fig. 2). The
notation used in (4) assumes symmetric joint-torque limits2

and, in this case, Zτ is a zonotope centered at the origin (see
Appendix VIII-A). In all the other cases the hypercube Zτ will
still represent a zonotope but its center will not correspond to
the origin of joint-torque space.

The task-space wrench polytope Pw
3, pre-image of Zτ , can

be written as follows (also see Fig. 2):

Pw =
{

w ∈ Rm | τ ≤ J(q)Tw ≤ τ
}

(5)

While the force ellipsoid Ew can be used as a qualitative metric
of the robot’s force amplification capabilities, the wrench
polytope Pw also includes a quantitative information about
the maximum and minimum amplitude of the wrench that the
robot can perform at the end-effector.

Wrench ellipsoids and wrench polytopes have been orig-
inally introduced for fixed-base non-redundant serial me-
chanical chains with m = n where n is the number of
actuated joints (dimension of generalized coordinates) and m
is the dimension of the end-effector force (or, equivalently,

1For electric and rotary hydraulic actuators, provided that the actuator’s
friction is properly modelled, the dependence of the torque limits on the
joint position is negligible. The torque limits of electric actuators also depend
on the joint velocity; it was shown, however, that such dependency is often
negligible compared to effects of other phenomena such as temperature [24].
In this work, moreover, we focus on static locomotion for which reason the
torque limit τlim can be identified with the maximum static stall-torque.

2We assume that the maximum joint-torque τ has the same amplitude of
the minimum joint-torque τ and opposite sign (τ = τ lim and τ = −τ lim).

3Also commonly called force polytope [18]
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the degree of constraint at the contact). In such cases the
Jacobian J(q) is thus a square matrix and, except for singular
configurations, its transpose JT can be inverted to obtain the
vertex representation of the wrench polytope Pw:

wlim = J(q)−T τ lim (6)

where τ lim ∈ Rn is a vertex of Zτ and wlim ∈ Rm is a vertex
of Pw. This is a suitable condition in which a one-to-one
relation between joint-space torques and task-space wrenches
exists. In the case of an arm with 3 DoFs (n = 3), for example,
a violation of one joint-torque limit will correspond to a point
on a facet of Zτ and also to another point on a facet of the
task-space polytope Pw. Similarly, a violation of two (or three)
joint-torque limits will correspond to a point on an edge (or a
vertex) of the Zτ and also to another point on an edge (or a
vertex) of the task-space polytope Pw. See Appendix VIII-A
for the definitions of facets, edges and vertices for n > 3.

For a more detailed explanation about the effect of gravity
on force ellipsoids and on other possible definitions of wrench
polytopes for fixed base systems in dynamic conditions please
refer to [25], [19], [26].

B. Wrench Polytopes for Floating Base Systems

In this section we illustrate the procedure to compute the
dynamic wrench polytopes A i.e., the set of feasible contact
wrenches that a tree-structured, floating base robot can perform
at its contact points with the environment while moving [18].
For this, let us consider the Equation of Motion (EoM) of a
floating-base robot4:

M(q)ṡ + C(q, s) + g(q) = Sτ + T(q)T f (7)

where q =
[
qTb qTj

]T ∈ SE(3) × Rn is the vector of
generalized coordinates of the floating-base system, composed
of the pose of the floating base qb ∈ SE(3) and of the
coordinates qj ∈ Rn describing the positions of the n

actuated joints. The vector s =
[
νTb q̇Tj

]T ∈ R6+n is the
vector of the generalized velocities, τ ∈ Rn is the vector
of actuated joint-torques while C(q, s) and g(q) ∈ R6+n

are the Centripetal/Coriolis and gravity terms, respectively.
The matrix M(q) ∈ R(n+6)×(n+6) is the joint-space inertia
matrix, S ∈ R(6+n)×n is the selector matrix whose rows
corresponding to the actuated joints are set to ones and
whose rows corresponding to the unactuated joints are set
to zeros. f ∈ Rmnc is the vector of contact forces5 that
are mapped into joint torques through the stack of Jacobians
T(q) ∈ Rmnc×(6+n). If we split (7) into its unactuated and
actuated parts, we get:[

Mb Mbj

MT
bj Mj

]
︸ ︷︷ ︸

M(q)

[
ν̇b

q̈j

]
︸ ︷︷ ︸

ṡ

+

[
cb
cj

]
︸︷︷︸
C(q,s)

+

[
gb
gj

]
︸︷︷︸
g(q)

=

[
06×n
In×n

]
︸ ︷︷ ︸

B

τ +

[
JTb
JTq

]
︸ ︷︷ ︸
T(q)T

f .

(8)

4We consider the floating-base robot composed by nf branches (e.g., num-
ber of feet and/or hands), with nc of them in contact with the environment and,
each of them having a number nl of actuated DoFs. Therefore, n =

∑nf

k=1 n
k
l

represents the total number of actuated joints.
5Note that quadruped robots have nearly point feet, henceforth we thus

consider pure forces acting at contact points and no contact torque (m = 3).

The vector qj results from the concatenation of the joint
positions of all the separate branches q1, . . .qnc

. The bottom
block of T(q) (bottom n rows), corresponding to the actuated
part Jq ∈ R(mnc)×n, is thus block diagonal and it can map
joint-torques into contact forces for each leg individually:

Jq = diag(J(q1), . . .J(qnc
)) (9)

where J(qi) with i = 1, . . . nc are the Jacobians of the limbs
in contact with the ground. Omitting the upper block (first 6
rows) of (8) is convenient because it avoids the coupling term
Jb and one wrench polytope can then be computed for each
individual limb.

On a similar line, as the dynamic manipulability polytope
Pw defined in [17], we can now define a quantity that we call
dynamic wrench polytope Ai as follows:

Definition: for each individual ith branch of the considered
tree-structured robot, Ai corresponds to the set of all contact
forces fi ∈ Rm that satisfies the bottom row of (8) for all the
joint-torques τi ∈ Rnl belonging to Zτ :

Ai =
{

fi ∈ Rm|∃τi ∈ Rnls.t. MT
biν̇ + Miq̈i + c(qi, q̇i)+

g(qi) = τi + J(qi)
T fi, τ i ≤ τi ≤ τ i

}
(10)

where i = 1, . . . , nc is the contact index and nc is the number
of active contacts between the robot and the environment.
The vectors qi ∈ Rnl and τi ∈ Rnl represent the joint-space
position and torque of only those joints that belong to the ith

limb while nl represents the number of actuated DoFs of that
limb. If m = 3 then the contact wrench fi ∈ Rm consists of
pure forces while if m = 6 then a non-zero contact torque is
also present. For a partial list of the main symbols employed
in this paper and their meaning please refer to the Notation
Section I-B.

In Fig. 3 an example of dynamic wrench polytope is drawn
superimposed on the Hydraulically actuated Quadruped (HyQ)
robot: each limb of this robot has three actuated DoFs (nl = 3)
and each foot can be approximated as a point contact (m = 3).
Ai is then a polytope of 2 · 3 = 6 facets and 23 = 8 vertices
(the mapping of a cube in the joint space). Equation (10)
purposely omits the first line (six equations) of (8) referring
to the unactuated floating base. This corresponds to neglecting
the role of the base link as a coupling among the limbs of the
tree-structured robot.

The advantage of computing separate individual wrench
polytopes Ai for each limb of the robot is that we can then
treat the volume of each polytope as an actuation capability
measure of the corresponding limb [27], [28].

As a final consideration, we can observe that in static
conditions (q̇i = q̈i = 0) (10) can be written as:

Ai =
{

fi ∈ Rm | ∃τi ∈ Rnls.t.

g(qi) = τi + J(qi)
T fi, τ i ≤ τi ≤ τ i

} (11)

The term g(qi) represents the effect of gravity acting on the
individual limb i = 0, . . . , nc. From a geometrical point of
view g(qi) can also be seen as an offset term that translates
the polytope Ai in the same direction of the gravity vector,
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Fig. 3: Representation of the wrench polytopes Ai on the feet
of the HyQ robot (i = 0, . . . , nc is the leg index). The wrench
polytopes Ai should be intersected with the friction cones
Fi to enforce unilaterality of the contact forces and to avoid
slippage.

i.e., towards the negative side of the fz direction of the
wrench space defined by the axes (fx, fy, fz, τx, τy, τz). For a
predefined set of torque limits τ limi an increase in the legs’
mass and, as a consequence, a large offset term g(qi), will
cause a decrease in the set of feasible positive contact forces.

C. The Iterative Projection Algorithm
The Iterative Projection (IP) algorithm is a method intro-

duced by Bretl et al. [9] for the computation of support
regions for articulated robots having multiple contacts with
the environment in arbitrary locations, having arbitrary surface
normals and friction coefficients. In [9], the support region is
defined as the horizontal cross section of the convex cylinder
that represents the set of CoM positions at which contact forces
exist that compensate for gravity without causing slip (for
given foot placements with associated friction models).
The IP belongs to a family of cutting-plane methods [29]
that allow to approximate a target convex set Y up to a
predefined tolerance value. The tuning of this tolerance allows
to conveniently adjust the computational performance of the
algorithm: it enables a rough but fast reconstruction of the
target set for high tolerance values. On the other hand, it also
enables a precise set reconstruction with longer solve times
when the tolerance value is low.

Bretl et al. [9] have applied this algorithm to the field
of legged locomotion with the goal to reconstruct the 2D
friction-consistent support region Yf for the CoM in static
equilibrium. This algorithm was also applied in related works
to compute multi-contact ZMP support areas [30] or time-
optimal trajectory timings [31], [32]. In order to reduce the
confusion with other similar regions that will be defined in
the upcoming Sections, in the remainder of this manuscript
the support region for the CoM in static equilibrium will be
referred to simply as the friction region.

Algorithm 1 reports the procedure presented in [9]; one can
notice that the algorithm recursively solves a Linear Program

(LP) that maximizes the horizontal position of the CoM cxy ∈
R2 along the direction defined by the unit vector aj ∈ R2

(j being in this case the iteration index) while satisfying the
friction constraints.

Input: cxy,pi,ni, t1,i, t2,i, µi for i = 0, . . . , nc ;
Result: friction region Yf
initialization: Youter and Yinner;
while area(Youter)− area(Yinner) > ε do

I) compute the edges of Yinner;
II) pick the edge cutting off the largest fraction of
Youter;

III) solve the LP:
max
cxy,f

aTj cxy

such that:
(III.a) A1f + A2cxy = u

(III.b) Bf ≤ 0

IV) update the outer approximation Youter;
V) update the inner approximation Yinner;

end
Algorithm 1: Bretl and Lall’s IP algorithm

The algorithm considers the projection of the robot’s CoM
cxy , the mass m, a set of nc contacts pi ∈ R3 with correspond-
ing surface normals ni ∈ R3, tangent vectors t1,i, t2,i ∈ R3

and friction coefficients µi ∈ R (for i = 0, . . . , nc). The
constraint (III.a) enforces the static equilibrium of the forces
and moments acting on the robot due to gravity g ∈ R3 and
to the contact forces f = [fT1 , . . . , f

T
nc

]T ∈ Rmnc . The matrix
A1 ∈ R6×mnc represents the grasp matrix of the set of point
contacts6, A2 ∈ R6×2 computes the x, y angular components
τxO and τyO of the wrench generated by the action of gravity
on the CoM c of the robot expressed with respect to a fixed
frame O. Constraint (III.b) ensures that the friction constraint
is satisfied through the matrix B ∈ R4nc×3nc . Note that this
represents the friction pyramids as an approximation of the
more precise friction cones [33]. Such friction cones could
be enforced in (III.b) thus transforming the LP of step (III)
into a Second Order Cone Program (SOCP) with a negligible
computational overhead.

A1 =
[
Ā1 . . . Ānc

]
∈ R6×(mnc),

A2 =

[
0

−mg ×PT

]
∈ R6×2, P =

[
1 0 0
0 1 0

]

u =

[
−mg

0

]
, bi =


(t1,i − µini)T
(t2,i − µini)T
−(t1,i + µini)

T

−(t2,i + µini)
T

 ∈ R4×3

B = diag(b1, . . . ,bnc
) ∈ R4nc×3nc , g = [0, 0,−g]T

(12)

where P ∈ R2×3 is a selection matrix that selects the x, y
components of the CoM and Āi is a transformation matrix

6[·]× represents the skew-symmetric operator associated to the cross
product. m = 6 for generic contacts and m = 3 for point contacts.
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such that:

Āi =


[

I3
[pi]×

]
∈ R6×3nc if m = 3[

I3 03

[pi]× I3

]
∈ R6×6nc if m = 6

(13)

With the above definitions, the friction region Yf is defined
as the set of horizontal CoM coordinates cxy ∈ R2 for which
there exists a set of contact forces that respects both static
equilibrium and friction constraints:

Yf =
{

cxy ∈ R2 | ∃f ∈ Rmnc s. t.(cxy, f) ∈ C
}

(14)

where:

C =
{

f ∈ Rmnc , cxy ∈ R2 | A1f + A2cxy = u,

Bf ≤ 0
} (15)

Fig. 4: Single step of Bretl and Lall’s IP algorithm. The
recursive LPs explore and expands the feasible region in the
direction where the difference between the inner and the outer
approximation is the largest.

Fig. 4 shows the process to compute one iteration of the
IP algorithm reported in Alg. 1. As it can be seen in step III,
the IP does not only maximize the horizontal CoM projection
cxy along the direction ai ∈ R2, but it also finds a feasible set
of contact forces f that fulfills static equilibrium and friction
cone constraints (constraints III.a and III.b).
Alg. 1 can also be regarded as a projection of the feasible set
C onto a two-dimensional region whose boundaries represent
the limit torques τxO, τ

y
O, that the robot can exert to balance the

effect of gravity acting on its CoM. Exploiting the assumption
that the only external force acting on the CoM is gravity we
then get a one-to-one mapping between the torque components
and the corresponding CoM (x, y) coordinates:

cx =
τyO
mg

, cy = − τ
x
O
mg

(16)

The friction region, as defined in (14), is a 2D convex
set but it is not, in general, a linear set (i.e., it is not a
polygon). The inner and outer approximations Yinner and
Youter used to estimate Yf are, however, always 2D polygons
by construction. For this reason we will therefore refer to Yf
in the rest of this paper with the term friction region rather
than friction polygon.

Del Prete et al. [10] proposed a Revisited Incremental Pro-
jection (IPR) algorithm to test static equilibrium which is
shown to be faster than the original IP formulation and than
other possible techniques such as the Polytope Projection (PP).
However the IPR approach is only suitable for convex cones
and, therefore, does not fit well with the projection of bounded
polytopes that we address in the next Section.

In the next Section we will see how we modified Alg. 1 in
order to obtain a 2D set that does not only respect the static
equilibrium and friction cone constraints, but it also respects
the actuation capabilities of the system.

III. THE FEASIBLE REGION

In this Section we propose the main contribution of this
manuscript which is an extension of Alg. 1 in order to obtain
support regions that also consider the robot’s joint-torque
limits besides the constraints imposed by the friction cones.

As opposed to Alg. 1, we include the static wrench poly-
tope Ai of every individual end-effector in contact with the
environment, as given in (11). The resulting procedure can
be found in Alg. 2.

Input: cxy,G,d,pi,ni, t1,i, t2,i, µi for i = 0, . . . , nc;
Result: feasible region Yfa
initialization: Youter and Yinner;
while area(Youter)− area(Yinner) > ε do

I) compute the edges of Yinner;
II) pick the edge cutting off the largest fraction of
Youter;

III) solve the LP:
max
cxy,f

aTj cxy

such that :

(III.a) A1f + A2cxy = u

(III.b) Bf ≤ 0

(III.c) Gf ≤ d

IV) update the outer approximation Youter;
V) update the inner approximation Yinner;

end
Algorithm 2: Actuation and Friction consistent IP.

In contrast to the original IP algorithm, we also retain the
possibility of exerting contact torques at the end-effectors; as
a consequence we define each individual contact wrench fi ∈
Rm where m = 3 if the considered end-effector is perturbed
by a pure force and m = 6 if, instead, also a contact torque
component is given.

In order to include in the IP the wrench polytopes Ai of
the ith limb in contact with the environment, we reformulate
(11) as follows:

Ai =
{

fi ∈ Rm | J(qi)
T fi = g(qi)−τi, τ i ≤ τi ≤ τ i

}
(17)
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(a) (b)

Fig. 5: Classical friction region (light gray) and feasible region
(dark gray) in four-stance (a) and triple-stance (b) conditions.

Considering that the joint-space torque variable τi is limited
by its minimum and maximum values τ i and τ i, we can then
further re-write (17) to explicitly highlight this dependence:

Ai =
{

fi ∈ Rm | g(qi) + τ i︸ ︷︷ ︸
di∈Rnl

≤ JTi fi ≤ g(qi) + τ i︸ ︷︷ ︸
d̄i∈Rnl

}
(18)

Equation (18) thus represents a compact notation for the static
wrench polytope initially defined in (11). We will now exploit
the notation in (18) to introduce the matrix G ∈ Rd×(mnc) and
the vector d, result of the concatenation of all the matrices
J(qi)

T and vectors di = [d̄Ti , d
T
i ]T ∈ R2nl of all the

individual limbs in contact with the environment:

G = diag
([ J(q1)T

−J(q1)T

]
, . . . ,

[
J(qnc

)T

−J(qnc
)T

])
∈ Rd×(mnc)

d =
[
dT1 . . .d

T
nc

]T ∈ R2ncnl

(19)
G and d can now be used to redefine the set A of actuation-

consistent CoM positions and contact forces/wrenches that sat-
isfy all the individual wrench polytopes Fi for k = 1, . . . , nc:

A =
{

f ∈ Rmnc , cxy ∈ R2 | A1f + A2cxy = u,

Gf ≤ d
} (20)

In analogy with (14), we can define a new set of actuation-
consistent CoM positions called actuation region:

Ya =
{

cxy ∈ R2 | ∃f ∈ Rmnc s. t.(cxy, f) ∈ A
}

(21)

As a further observation we notice that we are interested in
computing the set of CoM positions Yfa that simultaneously
satisfies both the friction and the actuation constraints (see
Fig. 5). This can be obtained by considering the intersection
of C and A:

C ∩ A =
{

f ∈ Rmnc , cxy ∈ R2 | A1f + A2cxy = u,

Bf ≤ 0, Gf ≤ d
}

(22)
Based on (22), the friction- and actuation-consistent region
Yfa, called feasible region, can be defined as:

Yfa =
{

cxy ∈ R2 | ∃f ∈ Rmnc s. t.(cxy, f) ∈ C ∩ A
}
(23)

In analogy with Alg. 1, Alg. 2 explains how Yfa can be
computed efficiently with an iterative projection.

Simultaneously imposing the inequality constraints (III.b)
and (III.c) in Alg. 2 corresponds to performing an intersection
of the friction cone Ci with the polytopesAi of the correspond-
ing contact point. This yields the set of all the contact forces
that simultaneously respect both the friction cone constraints
and the joint actuation limits of the ith limb (see for example
Fig. 3). Alg. 2, in practice, is equivalent to Alg. 1 with the only
difference being the constraint (III.c) relative to the actuation
limits.

The actuation region Ya (that only considers actuation
constraints and no friction constraints) can be obtained by
simply removing the constraint (III.b) from the LP that is
solved at the step III of Alg. 2. Intermediate cases exist where
some end-effector present unilateral contacts and other limbs
present instead bilateral contacts. This is the case, for example,
when a robot is climbing a ladder pushing with its feet and
pulling with his hands. Such conditions can be captured by
the presented IP modification by enforcing only the wrench
polytope constraints on the bilateral contact points and by
enforcing both friction pyramids and wrench polytopes on
unilateral contacts.

The wrench polytope Ai, unlike the friction cones Ci, is
a pose-dependent quantity and, as a consequence, its vertices
will change whenever the robot changes its configuration. The
feasible region Yfa can thus be considered to be accurate
only in a neighborhood of the current robot configuration.
The distance between the current CoM projection cxy and the
edges of Yfa can be considered as a combined measure of the
instantaneous robustness of the robot’s state with respect to the
contacts’ stability and joint-space torque limits. This distance
(in [m]) can also be seen as a robustness measure against
possible external loads being added on top of the robot that
may move the robot’s CoM even when its configuration does
not change.

Wrench polytopes (and thus the feasible region Yfa), be-
cause of their local validity, must be recomputed at every
configuration change which makes the motion planning formu-
lation harder compared to cases where only the friction cones
are considered. However, this local validity is also the key
element of the wrench polytopes that, if properly exploited,
can provide an insightful view on the relationship between
robot configuration and maximal admissible force at the end-
effectors.

A. 2D Feasible Regions vs. 6D Feasible Polytopes
To achieve a better understanding of feasible regions, it is

useful to underline the parallel that exists between them and
their 6D counterparts (see Tab. I). In particular, the friction
region Yf can be seen as a particular case of the Contact
Wrench Cone (CWC) criterion with only gravity acting on
the CoM of the robot. In the same way, also the actuation
region Ya can be seen as a static case of the Actuation Wrench
Polytope (AWP) and the feasible region Yfa can be seen as a
static case of the Feasible Wrench Polytope (FWP) [16].

It is possible to show that, for example, a 2D region can
be obtained from the relative 6D polytope (e.g., Actuation



8

Wrench Polytope (AWP) or Feasible Wrench Polytope (FWP))
by slicing the latter in correspondence of the planes: fx =
0, fy = 0, fz = mg and τz = 0. In this way only two DoFs
are left which correspond to the τx and τy coordinates of the
wrench space. The two-dimensional region that results from
this slicing procedure can then be mapped through (16) into
a set of feasible CoM coordinates cxy that corresponds to the
relative region (e.g., Ya or Yfa).

Computing the AWP or the FWP, however, can be com-
putationally demanding because of the high dimensionality
and large amount of halfspaces and vertices. This is what
motivated us to propose a variant of the IP algorithm that
allows to directly map joint-torques constraints into 2D CoM
limits (without the need of constructing first the whole 6D
polytopes). This results in a computation of the 2D feasible
region which is at least 20 times faster in presence of three
point contacts and 50 times faster in the case of four point
contacts. More details about the computational time of the
feasible region are provided in the next Section.

constraint (static) (dynamic)
type: 2D CoM proj. space 6D CoM wrench

friction friction/support reg. Yf Contact Wrench
Cone (CWC)

joint-torques actuation reg. Ya Actuation Wrench
Polytope (AWP)

friction & joint-torques feasible reg. Yfa Feasible Wrench
Polytope (FWP)

TABLE I: Analogies between 2D regions and 6D polytopes.

B. Computation Time
The usage of the IP algorithm implies a significant speed up

for the computation of the actuation region reaching average
computation times in the order of milliseconds (see Fig. 6)
which makes it suitable for online motion planning.
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Fig. 6: Computation time of the IP algorithm with only fric-
tion cone constraints (red), only wrench polytope constraints
(green) and both friction and actuation constraints (blue).
These statistics were collected on a 8-core Intel Xeon(R) CPU
E3-1505M v6 @ 3.00 GHz computer.

The solve time of the IP algorithm depends on the number of
inequality constraints embedded in it (only friction constraints,
only actuation constraints, or both). The most favorable sce-
nario is when only friction cones are considered (red in Fig.
6): in the case of linearized friction cones with four facets
per pyramid, the IP will present 4nc inequalities. The least
convenient scenario is instead when both friction pyramids and
wrench polytope constraints are considered (blue in Fig. 6), in
this case the IP will include (4+2nl)nc inequalities (assuming
that all the limbs in contact with the ground have same number
of DoFs nl and that the friction cones are linearized with 4
halfspaces). In the case of the HyQ quadruped this will result
in 10 inequalities per foot contact; in the case of a humanoid
robot with 6 DoFs per leg, instead, this will result in 16
inequalities per foot contact. Figure 7, for example, shows
the friction region Yf (green) and the feasible region Yfa in
the case of the HRP-4 robot standing still in a configuration
with non-coplanar contacts.

The last row of Fig. 6 shows that, even in such inconvenient
condition where all contacts are subject to both friction and
actuation constraints, the solve time is below 10ms in a
four-stance configuration and below 7.5ms in a triple-stance
configuration in 99.5% of the computations (blue histogram).
This allows the efficient computation of the feasible region at a
frequency of, at least, 100 Hz in a four stance configuration and
133 Hz in a triple stance configuration of a quadruped robot7.
These frequencies could be further increased by reducing the
tolerance factor of the IP algorithm (the tolerance value we
used was 10−6m2).

C. The Feasible Region under Different Loading Conditions

Fig. 8 reports various tests of computation of feasible 2D
areas for different gravitational loads applied on the CoM
of the robot. We can see that the heavier the load on the
robot, the smaller the area of the corresponding feasible region.

7These computation times, as much as the other performance reported in
this manuscript, have been achieved on a 8-core Intel Xeon(R) CPU E3-
1505M v6 @ 3.00GHz computer.

(a)
(b)

Fig. 7: Feasible region (blue) and friction region (green) for the
HRP-4 humanoid robot in a configuration with non-coplanar
contacts.
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This is analogous to the computation of feasible regions for
different percentages of torque limits while keeping the load
on the robot fixed. The blue dashed lines represent the classical
friction region Yf as defined by Bretl et al. [9].
Figs. 8a and 8c depict the feasible regions Yfa for the HyQ
robot with four and three coplanar stance feet. Figs. 8b and 8d
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Fig. 8: Every 2D polygon in this figure represents a feasible
region computed for a different gravitational load acting on
the robot’s CoM. The feasible regions are computed in four
possible scenarios:
(a) 4 stance feet & friction and actuation constraints;
(b) 4 stance feet & actuation constraints (no unilaterality);
(c) 3 stance feet & friction and actuation constraints;
(d) 3 stance feet & actuation constraints (no unilaterality);

The black points represent the stance feet positions of the
HyQ quadruped during a four and triple support phases; the
dashed blue lines represent the feasible region obtained by
consideration of friction constraints only.

depict the actuation regions Ya in the same configurations with
four and three coplanar stance feet. Such actuation consistent
areas Ya alone are not directly applicable in the field of legged
locomotion where robots typically make and break contacts
using their feet and have therefore no possibility to grasp the
terrain. Feasible regions Yfa should be used instead since they
include the friction constraints that also naturally encode the
unilaterality constraint.

As visible in Figs. 8b and 8d the robot’s CoM might lean
outside of the classical friction region Yf (dashed blue line)
depending on the magnitude of the load acting on it: this is
a typical condition in which one of the contacts is meant to
pull the ground to maintain equilibrium.

As a final consideration, comparing the figures related to the
same number of stance feet (Fig. 8d compared with 8c and Fig.
8b compared with 8a) one can see that the feasible region Yfa
cannot be obtained by simple intersection of the friction region
Yf and the actuation region Ya. Although this approximation
might be accurate under specific conditions, in general the
intersection and projection operators do not commute [29]. Let

us consider C to be the set of contact forces and CoM positions
cxy that respect static equilibrium and friction constraints
(see (15)); let us then also consider A defined as the set of
contact forces and horizontal CoM positions cxy that respect
all static equilibrium, wrench polytopes and friction cones
constraints (see (18)). The friction region [9] can then be
defined compactly as:

Yf = IP (C), (24)

the actuation region as:

Ya = IP (A) (25)

and the (actuation- and friction-consistent) feasible region as:

Yfa = IP (C ∩ A) (26)

where IP is the Iterative Projection operator. The projection
and intersection are non-commutative operators and, in partic-
ular, the following inclusion always holds:

Yfa ⊆ Yf ∩ Ya (27)

Yfa is therefore more conservative than the intersection of Yf
and Ya. Intuitively, (27) might be explained by considering
that there may exist CoM positions that, at same the time
provide feasible wrench solutions if the friction cones or
wrench polytope constraints are considered individually but
they provide unfeasible wrench solutions if these constraints
are considered simultaneously. As a consequence, the feasible
region Yfa has to be a subset of the intersection between Yf
and Ya.

IV. CENTER OF MASS AND FOOTHOLD PLANNING

In this Section we employ the concept of feasible region Yfa
introduced in Section III for the sample-based optimization of
feasible footholds and CoM trajectories. The all locomotion
scheme proposed in this Section is based on the assumption
that a robot is assumed to be statically stable and, simultane-
ously, a set of admissible joint-torques exists iff:

cxy ∈ Yfa (28)

where cxy = Pc is the CoM projection on the horizontal
plane. Robustness against possible modelling errors or external
disturbances can then be enforced by considering the minimum
distance r between cxy and the edges of the feasible region.
This can be found by solving the following LP:

arg max
r

aTi cxy + ||ai||2r ≤ bi, i = 0, . . . , Nh (29)

where Nh is the number of edges of Yfa, ai ∈ R2 is the
normal to the ith edge and bi ∈ R is the known term. r is thus
the radius of the largest ball centered in cxy and inscribed
inside Yfa. and it can also be seen as a static instantaneous
measure (i.e., a margin) of how far the robot is from slipping
or from hitting one of joint-torque limits (actuation limits).
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A. CoM planning strategy

As we only deal with CoM planning in this Section, we will
assume the gait sequence, phase timings and step locations to
be predefined. Since the feasible region, at the actual state, is
restricted by the quasi-static assumption (an extension to the
dynamic case with non-negligible CoM horizontal acceleration
is part of future works) a quasi-static gait is a good template
to test its applicability.

As the main hardware platform for our experiments is
the quadruped robot HyQ, we will consider here a static
quadrupedal gait called crawl [34]. The crawl is typically
divided in two main phases called swing phase and move-
base phase. During the swing phase, the robot does not move
its trunk and only one foot at the time is allowed to lift-off
from the ground and move to a new foothold while all the
other three feet have to be in stance. During the move-base
phase, instead, all four feet are in stance and the robot moves
its trunk to a target location and orientation.

The most critical phase of this static gait, in terms of
stability and margin with respect to the joint-torque limits,
is this triple stance phase (i.e., the swing phase) because the
robot’s weight must be distributed only on three legs. The
CoM is meant to move only during the four-stance phase,
to enter the future support region which is opposite to the
next swing leg. Therefore, after each touchdown, we re-plan a
polynomial trajectory that links the actual CoM position with
a new target inside the future support region. This enables
us to completely unload the swing leg before liftoff and
naturally distribute the weight onto the other three stance legs.
In our previous work [34] we computed this target heuristically
without any awareness of joint-torque limits. Specifically, we
were computing the target point at a hand-tuned distance
from the main diagonal of the support triangle, in order to
sufficiently load the off-diagonal leg. However, this can be
inaccurate in complex terrains, because:

1) the friction region Yf coincides with the feasible region
Yfa only when every individual limb of the robot is able
to carry the total body weight of the robot;

2) an increased load on the robot or an inconvenient robot
configuration can further restrict the feasible region Yfa
making it considerably smaller than the friction region.

Therefore, the heuristic target, since it is not formally taking
these aspects into account, might fail in situations that are
more demanding due to a complex terrain geometry. Con-
versely, using the feasible region allows us to select a target
position for the robot’s CoM that results in an admissible and
statically stable configuration, in the case of: 1) a generic
terrain shape (i.e. non coplanar feet, each one with different
normal at the contact) 2) different loading conditions.

We plan the CoM target to be inside a scaled feasible
region by a predefined scaling factor s. This allows us to
increase the robustness of our strategy against possible external
disturbances and modelling inaccuracies that may arise from
the static locomotion assumption that we took in (11)8.

8This has a particular effect on the execution of dynamic motions on
electrically-actuated robots whose torque limits (and thus their wrench poly-
topes) depend on the joint velocity.

At the touch-down instant, we compute the feasible region
Yfa, considering as inputs the position of the three stance
feet of the future support triangle (the feet sequence is pre-
defined) and the corresponding normals ni at the expected
contact points. To evaluate the Jacobians (necessary to map the
actuation constraints into a set of admissible contact forces),
we also provide the future CoM position predicted by the
heuristics. If the projection of the actual CoM cxy = Pc is
inside Yfa, we then set the target CoM equal to the actual
CoM c ∈ R3. If it is, instead, outside the region Yfa, we set
the target CoM equal to the point x∗ on the boundary of the
region (or of the scaled region if we want to provide a certain
degree of robustness) that is closest to cxy . This allows us to
minimize unwanted lateral/backward motions. To obtain the
point x∗ we solve the following QP program:

x∗ = argmin
x∈R2

‖x−Pc‖2 (30)

subject to: Ax ≤ b (31)

where we minimize the Euclidean distance between a
generic inner point x and the actual CoM projection cxy .
A and b matrix represent the half-space description of the
polygon Yfa.
The CoM target is depicted as a yellow cube in Fig. 9 while
the blue cube represents the heuristic target. In the same
picture we show an image of the feasible region Yfa (light
gray) and the scaled feasible region (dark gray) scaled by a
factor of s = 0.8. The dashed triangle represents the friction
region Yf 9. The scaling procedure can be defined as an affine
transformation that preserves straight lines and parallelism
relationships among the edges of the feasible region. The
scaling can be done with respect to the Chebyshev center
(i.e., the center of the largest ball inscribed in the feasible
region) or with respect to the centroid. The former is more
computationally expensive because it requires the solution of
an LP; the latter is faster to compute because it can be found
analytically as the average of all the vertices. The centroid vc
can be considered as a good approximation of the Chebychev
center whenever the feasible region presents good symmetry
properties10. In the case that vc is used, the vertices v̂ of the
scaled region Ŷfa can be computed by scaling the vertices v
of Yfa as: v̂ = s(v − vc) + vc where s ∈ (0.0, 1.0] is the
scaling factor.

B. Foothold Planning

The foothold planning strategy that we present in this
Section represents a sample-based strategy to improve the
navigation capabilities of the HyQ quadruped robot on rough
terrains. Our strategy employs the height map provided by the

9Note that just scaling the value of joint-torque limits (instead of the vertices
of the feasible region) might not results in a conservative region. This is
because some boundaries of the resulting feasible region could be determined
by the friction region itself, thus reducing the joint-torque limits would not
result in an increase of robustness with respect to those boundaries. For this
reason, it is advisable to scale directly the vertices of the feasible region rather
than joint-torque limits used to compute the feasible region.

10Whenever the feasible region is not symmetric, however, the centroid
might considerably differ from the Chebychev center thus resulting in a value
of the robustness margin r lower than desired.



11

perception module and seeks among the terrain samples the
foot location that maximizes the area of the corresponding
feasible region Yfa.

We exploit the computational efficiency of the IP algorithm
as in Alg. 2 in order to plan foothold locations that ensure
the robot’s stability and actuation consistency while traversing
rough terrains. As in the previous Section, we assume here a
static crawl gait with predefined durations of the stance and
swing phases. The idea is to find, at each lift-off, the most
suitable foothold to maximize the area of the feasible region
for the next swing leg. Our strategy consists in sampling a
set of p candidate footholds around the default target foothold
(from heuristics) located along the direction of motion. We
then evaluate the height map of the terrain in those sampled
points (i.e., correcting the corresponding z coordinate and
swing orientation to adapt to the perceived terrain surface 11)
[35], [36]. The default step location is simply a function of the
user-defined desired linear and angular velocities of the robot
and it neither considers the external map of the surrounding
environment, nor the stability and actuation consistency re-
quirements [34]. Fig. 9 shows a foothold planning simulation
in which eight different candidate footholds (red spheres) are
considered. As additional feature, we discard the footholds
that: 1) are close to the edge, 2) would result in a shin collision,
3) are out of the leg’s workspace.

In the simulation shown one out of 8 is discarded because it
was too close to the edge of the pallet. The next step consists
in computing the feasible regions Yifa for the p = 8 considered
foot locations (i = 1, . . . , p) keeping fixed the set of feet that
will be in stance during the following swing phase. Since
the feasible region depends on the robot configuration, we
consider the future position of the CoM (computed through
the heuristics) for the next triple stance phase and obtain the
future joints configuration through inverse kinematics. This
joint configuration is then used to update the Jacobians needed
for the computation of the candidate feasible region Yifa.
The foothold planner then selects, among the reduced set of
admissible footholds, the one that maximizes the area of the
corresponding feasible region12.

In the baseline walking on flat terrain, when joint-torques
are far away from their limits, the default foothold is selected.
Conversely, on more complex terrain, when the robot is far
from a default configuration (e.g., when one leg is much
more retracted than the other legs), the scaled version Ŷfa
(described in the previous Section) can take on a small area
(see Fig. 9). In this case the default step will be corrected
(yellow ball in Fig. 9) in order to enlarge this area and, as a
consequence, to increase the robustness to model uncertainties
and tracking errors. The default target is not visible because,

11To avoid corrections in unwanted directions, we define the sampling
direction along the direction of the predicted step, (i.e. in consistency with
the desired velocity).

12Another approach could consist in maximizing the residual radius (i.e.
radius of the largest circumference inscribed in the region), however, we
noticed that often multiple candidate footholds may return the same residual
radius but different areas. This is the case any time that the CoM projection
is closer to a friction-limited edge rather than an actuation-limited edge of
the feasible region.

being computed on a planar estimation of the terrain [34], it
turns out to be inside the terrain.

Optimal
foothold

Actual
CoM

Optimal 
CoM target

Heuristic
CoM target

Optimal
Sampled
Heuristic

Actual

Fig. 9: We show the classical friction region (dashed lines), the
feasible region (light gray) and the scaled feasible region (dark
gray) with a scaling factor s = 0.65. The cubes represent CoM
projections on the ground of different meaning: the heuristic
CoM target (blue), the CoM target as computed using the
feasible regions (yellow) and the actual CoM (green). The
spheres represent candidate footholds (red) and the optimal
foothold (yellow) selected by the sampling-based planner. We
can see that the optimal CoM target (yellow cube) lies on the
edge of the scaled feasible region (dark gray) computed using
the optimal foothold (yellow sphere).

V. SIMULATION AND EXPERIMENTAL RESULTS

The improvement of a planning strategy based on the
feasible regions with respect to our previous heuristic strategy
can be demonstrated by either increasing the load acting on the
robot during a standard walk on a flat terrain or by addressing
challenging terrains. Both scenarios, and any combination of
them, bring indeed the robot closer to its actuation limits.

As a first result we report the validation of the feasibility
margin defined as the distance between the CoM projection
and the edges of the feasible region. We then report some
simulation and experimental data of the CoM and foothold
strategy that we described above in Sec. IV-A. The results of
this strategy can be seen in the accompanying video13.

A. Validation of the Feasibility Margin

Figure 10 represents the data collected in a simulation
where we applied on the CoM of the HyQ robot a vertical
increasing force from 0 N up to −600 N (upper plot). This
force represents a possible external payload applied on the
robot and, by increasing its amplitude, we are interested in
understanding how the feasible region Yfa adapts to it.

In the lower plot of Fig. 10 we can see that, as a con-
sequence of this increasing external load, the feasible region
gradually shrinks with a consequent reduction of the feasibility
margin r from 0.24 m to about 0.06 m. Recall that the feasi-
bility margin r is defined as the minimum distance between

13https://youtu.be/9pvWO2Qmo9k

https://youtu.be/9pvWO2Qmo9k
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the CoM projection cxy and the edges of the feasible region
Yfa (as in (29)).

For this validation we also introduce the joint-torque limits
violation flag β whose definition is the following:

β =
{ 0 if τi ∈ [τmaxi , τmini ], ∀i = 0, . . . , n

1 otherwise (32)
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Fig. 10: Validation of the distance between the CoM projection
and the edges of the feasible region Yfa: one of joint-torque
limits is hit (i.e., β = 1) approximately at the same time when
the feasibility margin r becomes negative (lower plot).

Note that a negative r means that the CoM projection cxy
lies outside the edges of the feasible region Yfa. After second
74 (yellow vertical line) the external load is fixed to −600 N
and the robot starts displacing laterally with an increasing cy
coordinate. The second plot from above shows that, when the
robot has moved laterally of about 0.12 m (red vertical line),
the feasibility margin r becomes zero and, approximately at
the same time, the torque limits violation flag β becomes one,
meaning that one of joint-torque limits of the robot has been
reached (second plot from the bottom).

B. Walk in Presence of Rough Terrain and External Load

The next simulation result that we report in this Section is
a walk over a 0.22 m high pallet, where the HyQ robot only
lifts two lateral legs on the pallet while the two other legs
always remain on the flat ground. The considerable height of
the pallet and the asymmetry of the terrain force the robot
to take on complex configurations to step up and down the
obstacle and, even if no further external load is applied, the
robot might easily reach its joint-torque limits. In this scenario
we compare the behavior of two different strategies:

1) friction-region based walk: this motion planning approach
combines the foothold selection strategy explained in Sec.
IV-B with a CoM motion planning that aims at always
keeping the CoM projection inside the scaled friction
region Ŷf ;

2) feasible-region based walk: this approach uses the same
foothold strategy as above but makes sure that the CoM

projection always lies inside the scaled feasible region
Ŷfa rather than Ŷf . In this way therefore both friction
and actuation constraints are explicitly considered at the
motion planning level and are continuously re-planned
for with a receding horizon of one step.

Evaluating the performance of these two strategies using
the feasibility margin r would skew the results in favor of
the latter method, considering that the planner always makes
sure that there exists a minimum feasible margin r itself. For
the assessment of the two planners’ performance we therefore
define the minimum joint-torque margin mτ . This corresponds
to the minimum distance between the torque of each joint of
the robot and their corresponding maximum and minimum
values:

mτ = min(d0, . . . , dn) (33)

where:

di = min(τmaxi − τi, τi − τmini ), i = 0, . . . n (34)

The quantity mτ measures how well the proposed online
motion planner is able to keep the joint-torques away from
their limits, while navigating complex geometry environments,
being able to reach to the user direction commands or to
unexpected disturbances.

It is important to mention that we evaluate mτ only during
during the triple support phases (i.e., when only three legs are
in contact with the ground and the fourth leg is in swing).
This is because the triple support phase is the most critical for
joint-torque limits (all the robot’s weight is loaded on three
legs rather than four) and because, as a consequence, the CoM
planning strategy optimizes the position of the CoM only for
this phase. Because of the static assumption that we assumed
in (11), the feasible region computation is only valid when
the velocity of the robot’s base is zero, condition which is not
respected during the four-stance phase (i.e., when the robot’s
base moves).

The values of mτ for the two simulations are reported in
the upper plot of Fig. 12. The red line shows the evolution
of mτ in the case of the friction region-based planning over
the entire simulation (up to 14s). The blue line shows instead
the evolution of mτ in the case of the feasible region-based
planning over the entire simulation (up to 21s). The recording
of both simulations is stopped when the robot steps down
the pallet with all four legs, the different duration of the
simulations is therefore due to the different behavior they
present during the negotiation of the pallet. We can notice
that the minimum joint torque margin reached by the friction
region based simulation of 35 N ·m (dashed red line) occurs
towards the conclusion of the experiment when the robot steps
down the pallet with the last leg. The feasible region based
walk instead performs an increased number of shorter steps
before stepping down the pallet, in this way the simulation
lasts longer and the minimum joint-torque margin of 39 N ·m
(dashed blue line) is higher than the simulation where only
friction was considered.
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Fig. 11: Snapshots of HyQ traversing a course of mild roughness using the map-based CoM and foothold selection strategy
presented in this manuscript. The 2D polygons represent the classical support region, or friction region, (gray area with dashed
lines) and the feasible region (green area with thick lines). The rougher the terrain, the higher the difference between the
support region and the feasible region.
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Fig. 12: Minimum joint-torque margin mτ in simulation
(above) and hardware experiments (below). The red line shows
the values of mτ for a static crawl based on a heuristic strategy
(red) and based on our proposed feasible region (blue). We
can see that in both plots the minimum value of mτ is higher
when the strategy based on the feasible region is employed.
This also results in shorter steps of the robot and thus a longer
experiment time.

The lower plot of Fig. 12 refers instead to a hardware exper-
iment where the HyQ robot walks over a moderately rough
terrain made of bricks and plastic tiles while also carrying a
10 kg extra load on its trunk (snapshots of this test can be seen
in Fig. 11). As the robot proceeds with a predefined foothold
sequence and timing, the sample-based motion planner allows
the robot to adapt its footholds and the trajectory of the CoM
to the height map received by the perceptive module. Having
a limited number of sampled footholds p allows one to set an
upper bound on the maximum computation time required by
the planner. In the considered experiment we had p = 9 which
results in 9 sequential repetitions of the IP algorithm for an
overall computation time of about 63ms (every evaluation of
a triple-stance phase takes in average 7ms). This enables the
replanning at a frequency of about 15 Hz in order to always
include the latest values of the height map or possible changes
in the state of the robot14.

Also in this case, as in the simulation, the feasible region
based approach presents a higher minimum joint-torque mar-

14These computational performance would be significantly further improved
by a parallelization of each foothold evaluation.

gin of 29 N ·m (dashed blue line) compared to the 21 N ·m
margin that we measured for the friction region based approach
(dashed red line). The video of the hardware experiments can
be found in the accompanying video.

VI. DISCUSSION

In this Section we briefly address a few important aspects
of the proposed feasible region such as its possible usage for
dynamic gaits, whole-body control performance evaluation and
for applications with bilateral contacts:
• Relaxation of the quasi-static assumption: a dynamic

extension of the feasible region, that considers current
configuration, velocity and acceleration of the robot,
could be obtained performing the two following actions:

1) solve Alg. 2 employing the dynamic wrench polytopes,
given in (10), rather than the static wrench polytopes
given in (11);

2) include the fictitious forces acting on the robot’s CoM
inside the vector u in (12)15.

The above can be carried out given the current
configuration, velocity and acceleration of the robot for
visualization purposes or for testing the feasibility of the
current state. Please note that this would also allow to
explicitly consider the dependence of electric actuators on
the joint velocity. However, using this dynamic extension
of the feasible region for online motion planning purposes
is more challenging because of the curse of dimensional-
ity. One possibility for achieving semi-dynamic motions
would consists in employing the static feasible region,
scaled by a factor s to enforce some robustness margin
[11], in combination with a dynamic reference point such
as the ZMP or the ICP;

• Benchmarking of whole-body controllers: Having the
CoM inside the feasible region Yfa provides a formal
guarantee of existence of, at least, one set of contact
forces that, simultaneously, satisfies the wrench polytope
constraints and the friction cone constraints. Yfa can thus
also play a role in the evaluation of the performance of
whole-body controllers. The interest is of this approach
lies in the fact that constraints with different units ([N] for
friction force and [N ·m] for joint-torques) are naturally
mapped into a single number (in [m]);

15This corresponds to slicing the FWP with a plane orthogonal to the
aggregated centroidal wrench (i.e., gravito-inertial wrench) [16]
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• Bilateral contacts: actuation-consistent regions Ya can
be useful in other fields of robotics, such as loco-
manipulation tasks, or whenever in presence of bilateral
contacts (e.g., climbing robots with magnetic grippers
[37]), heavy-duty walking machines with footsteps an-
chored to predefined locations (e.g., the TITAN series
robots [38]) and whenever a gripper/hand attached to the
base link might lift an external weight and thus change
the robot’s loading conditions.

VII. CONCLUSION

In this paper we presented an approach for projecting joint-
torque constraints from the high dimensional joint space (n+6
DoFs) of legged robots to the two-dimensional subspace of the
CoM horizontal plane. Despite the static assumption and the
local nature of the resulting 2D feasible region, this strategy
introduces the possibility to embed torque limitations of the
actuators inside the formulation of motion planners based on
simplified dynamic models and thus to efficiently plan realistic
locomotion at high frequencies.

The feasible region Yfa does not suffer from limitations
related to specific robot morphologies or specific terrains
(e.g., flat terrains). As a consequence, this friction-and-
actuation consistent area Yfa can be employed for motion
planning of legged robots on rough and complex terrains (the
only limiting assumption being of static locomotion), where
classical simplified models fail.

Thanks to the computational efficiency of the feasible region
Yfa estimation, actuation-consistency and robustness can be
tested online at a minimum of 100 Hz rate and without any
approximation regarding the location and orientation of the
contacts. This last point allows our approach to be embedded
in a map-based foothold optimization strategy that samples at
15 Hz feasible footholds on the height map provided by the
vision module (see Fig. 9).

We reported simulations of the HyQ robot crossing a pallet
of 0.15 m and hardware experiments of the real robot on a
terrain of mild roughness (with bricks up to 0.1 m) while
carrying an additional load of 10 kg. The foothold strategy
corrected the steps (e.g., making them smaller) when needed
to increase the robustness to uncertainty and to disturbances
represented by the feasibility margin r.

In the two following we present a few possible future
developments of the work presented in this paper:
• Global feasible region: as we discussed in this paper

the feasible region is a configuration dependent quantity,
whose validity is thus guaranteed only in a local neigh-
borhood of the considered state. Our future efforts will
focus on the computation of a global extension of the
feasible region which only depends on the contacts’ pose;

• Offline pre-computation and differentiation: it has
been shown in the past that CoM-admissible regions that
respect feasibility constraints such as kinematic limits and
collisions can be learned using proper function approx-
imators [39]. A similar approach could be employed to
learn an approximate differentiable relationship between
the robot’s state and the feasible region. This would allow

us to embed the feasible region as a constraint within,
for example, a gradient descent trajectory optimization
problem.

VIII. APPENDIX

We recall in this Appendix few of the main concepts
and definitions connected to computational geometry that are
heavily used in this manuscript. Most definitions are taken
from the following sources [40], [41], [42], [43].

A. Generic Bounded and Unbounded Polyhedra Definitions

Main definitions and terminology used in sets representation
and adopted in this paper:
• A convex polyhedron H is a subset of Rd that solves a

finite set of m linear inequalities. The volume of a polyhe-
dron can therefore be either bounded or unbounded. This
is a generic definition that may include both (bounded)
polytopes and (unbounded) polyhedral cones.

H = {x ∈ Rd | Ax ≤ b} (35)

with A ∈ Rm×d and b ∈ Rm.
• A convex polytope P is a subset of Rd that solves a finite

set of m linear inequalities and is bounded.

P = {x ∈ Rd | Ax ≤ b} (36)

with A ∈ Rm×d and b ∈ Rm.
• A convex polygon P is a polytope in dimension d = 2:

P = {x ∈ R2 | Ax ≤ b} (37)

with A ∈ Rm×2 and b ∈ Rm.
• A convex zonotope Z is a special kind of polytope in

Rd that presents particular symmetry with respect to the
its center [44], [45]. A zonotope can therefore be fully
described by its center c ∈ Rd and its p generators g ∈
Rd.

Z =
{

c +

p∑
i=1

αigi |αi ∈ [−1, 1],gi ∈ Rd, c ∈ Rd
}

(38)
• A convex polyhedral cone C is a subset of Rd that solves

a finite set of m linear inequalities. Geometrically, each
linear inequality defines a hyperplane that has to pass
through the origin.

C = {x ∈ Rd | Cx ≤ 0} (39)

with A ∈ Rm×n and 0 ∈ Rm is a null vector.
Convex polyhedra, polytopes, zonotopes and cones are

called d-polyhedra (d-polytopes, d-zonotopes or d-cones) if
they have a non-zero interior in Rd;

In the computational geometry terminology, a hyperplane
h of Rd is a supporting hyperplane of the polyhedron H if
one of the closed halfspaces of h contains H. A face F of H
is a generic term to indicate either an empty set, H itself or
the intersection between H and a supporting hyperplane. The
faces of dimension 0, 1, d − 1 and d − 2 are usually named
vertices, edges, ridges or facets [40].
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• A half-space is either of the two parts in which a
hyperplane divides an affine space.

• A generator is a broad term to indicate all the elements
of Euclidean space Rd that can be used to represent
the considered set. Depending on the considered type
of polyhedron, generators may include vertices, rays (or
edges).

According to the Minkowski-Weil theorem [42], polyhedra can
be equivalently described in terms of their half-spaces (H-
description) or in terms of their generators (G-description). The
generators, depending on the considered geometrical object,
can consist of vertices (V-description), rays (R-description)
or an interval (I-description). Polytopes, for example, can be
equivalently described in terms of H- and/or V-description.
Polyhedral cones C can be equivalently described in terms of
H-description (see (39)) and/or R-description:

C =
{ p∑
i=1

αiri | ∀αi ≥ 0,

p∑
i=1

αi = 1, ri ∈ R
}
(40)

where p is the number of rays of the set of rays R:

R =
{
r1, . . . , rp | ri ∈ Rd

}
(41)

A cone, however, can not be represented by V-description as
it only owns one vertex which is placed in the origin of the
reference frame.

B. Minkowsky Sums and Convex Cones

In the following we will discuss the main properties of sum
of sets and convex hull algorithm:

• Given two convex sets A and B, their addition (called
Minkowski sum), indicated by the operator ⊕, another set
is defined as the sum of the all elements of A with all
the elements of B:

A⊕ B = {a + b | a ∈ A, b ∈ B} (42)

which presents a O(a ·b) time (where a is the cardinality
of A and b is the cardinality of B).

• For a given convex set S = {s1, . . . , sn|s ∈ Rd} com-
posed of n finite elements of dimension d, their convex
hull is defined as the set of all the convex combinations
of all its elements (e.g. the vertices of a polytope):

ConvHull(S) =
{ n∑
i=1

αisi | ∀αi ≥ 0,

n∑
i=1

αi = 1
}

(43)

The convex hull distributes over the Minkowski sum, mean-
ing that the following property holds:

ConvHull(A⊕B) = ConvHull(A)⊕ConvHull(B) (44)

In the worst-case output the complexity of the problem is
O(n[d/2]).

For the computation of many locomotion related geometri-
cal objects, such as the Contact Wrench Cone (CWC), it is

important to notice that, given the R-representation of two
polyhedral cones C1 and C2:

C1 =
{ p1∑
i=1

αir1,i | ∀αi ≥ 0,

p1∑
i=1

αi = 1, r1,i ∈ R1

}
C2 =

{ p2∑
i=1

αir2,i | ∀αi ≥ 0,

p2∑
i=1

αi = 1, r2,i ∈ R2

}
(45)

the R-representation of their Minkowski sum Csum can be
obtained by stacking together (i.e., using the union operator
∪) the set of rays R1 and R2 of the two individual cones:

Csum = C1 ⊕ C2 =
{ p1+p2∑

i=1

αiri | ∀αi ≥ 0,

p1+p2∑
i=1

αi = 1, ri ∈ R1 ∪R2

} (46)

Despite yielding a redundant representation with internal rays,
this property allows a considerable speed-up (O(p1 + p2)
time) compared to the Minkowski sum of two convex bounded
polytopes (O(p1 · p2) time).
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