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Abstract— We propose a control pipeline for SAG (Searching,
Approaching, and Grasping) of objects, based on a decoupled
arm kinematic chain and impedance control, which integrates
image-based visual servoing (IBVS). The kinematic decoupling
allows for fast end-effector motions and recovery that leads to
robust visual servoing. The whole approach and pipeline can
be generalized for any mobile platform (wheeled or tracked ve-
hicles), but is most suitable for dynamically moving quadruped
manipulators thanks to their reactivity against disturbances.
The compliance of the impedance controller makes the robot
safer for interactions with humans and the environment. We
demonstrate the performance and robustness of the proposed
approach with various experiments on our 140 kg HyQReal
quadruped robot equipped with a 7-DoF manipulator arm.
The experiments consider dynamic locomotion, tracking under
external disturbances, and fast motions of the target object.

I. INTRODUCTION

To increase the number of tasks mobile manipulation
systems can execute in unstructured environments, mobility
and vision are two key aspects. Concerning the former, legs
allow to select footholds and control the wrench acting on the
floating base, orienting and moving it to increase the manipu-
lation workspace when necessary [1][2][3]. Until now, vision
for legged platforms such as quadrupeds and bipeds has been
mainly used for locomotion, e.g. to correct nominal footholds
[4][5] or for navigation, e.g. visual odometry [6]. Many
recent works combined the advantages of a mobile legged
platform with a robotic manipulator to perform manipulation
tasks: opening a door [7][8][9], pulling a rope with a basket
[10], turning a valve [10][9], grasp a target object [3] and
put it into a trash bin [2]. Although successful executions,
most of these works provide to the robot direct knowledge
of its surroundings and do not close the loop with vision for
manipulation. The use of visual feedback from an onboard
camera placed at the arm’s end-effector, also known as
Eye-In-Hand camera [11], has been shown to guarantee
a more accurate positioning of the arm’s end-effector for
manipulation, robustness to calibration uncertainties, and
reactivity to environmental changes [12]. From 2D images
position-based visual servoing (PBVS) retrieves the pose of
the target, while image-based visual servoing (IBVS) works
with feature representation directly in the image domain.
The advantages of IBVS over PBVS are the following: (i)
it does not require any 3D model; (ii) it is more robust
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Fig. 1: IIT’s 140 kg HyQReal robot equipped with a 7-
DoF manipulator arm (Kinova Gen3 [19]) grasping a bottle.
The translucent blue and green areas represent, respectively,
the Shelbow and the Wrist kinematic groups (proposed and
introduced in Sec. II-D to allow for fast visual servoing).
The frames depicted on the robot associate, respectively, the
red/green/blue colored axes to their x/y/z coordinate axes.
The frames are named as B: robot’s base, WR: arm’s wrist,
C: camera, EE: arm’s end-effector.

with respect to uncertainties of robot and camera model,
in particular to calibration errors [13]; (iii) it is easier to
formulate feature-based motion strategies aimed at keeping
the target always in the camera field of view. Over the
past, IBVS control schemes have been proposed for control
of underactuated systems like drones [14], non-holonomic
mobile robots [15][16] and floating-base space manipulators
[17]. Despite the advantages, feature depth is unknown in
IBVS and it must be estimated or measured (e.g directly
from a RGB-D camera) in order to calculate the interaction
matrix. To alleviate some of the problems induced by both
methods, hybrid schemes [18] use 3D information, usually
obtained by epipolar geometry, to control some degrees of
freedom (DoF) of the camera, while the remaining ones are
controlled through IBVS.

To have robots autonomously performing tasks that in-
volve environment interaction, they need to have the ability
to grasp objects and/or tools. Depending on the application,
e.g. logistics, domestic support, construction, etc., the differ-
ence will be in what and how to manipulate. The problem of
grasping a generic object is commonly split into three phases:
(a) Search, i.e. scanning the robot’s surroundings, while rec-
ognizing and distinguishing objects of interest; (b) Approach,
i.e. plan and execute a trajectory to get close to the object;
(c) Grasp, i.e. move the gripper to the target pose in order to



grasp the object and close the gripper. Previous frameworks
have given contributions to sub-problems related to the SAG
(S: Search, A: Approach, G: Grasp) of an object. These
contributions include ensuring stop-free exploration while
searching [20], detecting objects in challenging environments
[21], collision-free object search in cluttered scenarios [22]
and locating moving targets [23]. Additionally, a few-shot
object detection is presented in [24] to learn detection-based
tasks for new objects. In [24], a complete SAG pipeline is
executed, and the robot learns to grasp scattered objects.
Although the robot is able to execute the SAG pipeline, the
target is not being shown to move.

Mobile platforms are commonly used for SAG problems,
due to the increased mobility and reachability. These systems
have more degrees of freedom than the ones necessary from
the visual task, normally defined as keeping the object in
the camera field of view. Hence, the camera position can
be changed in many different ways, using redundancy to
optimize a configuration-dependent criteria, such as distance
from obstacles, singularities and manipulability indices, or
dynamic cost functions [25]. In [26] the authors formulate
visual tracking tasks for a humanoid robot in a hierarchical
Quadratic Programming (QP) problem, relating the motion of
the visual features to the joint accelerations and solving for
the latter ones. Other constraints relating feature visibility
and mobility, such as dynamic consistency and center of
mass control, are set as tasks/constraints in the same QP
problem at different priorities. Differently, in [3], vision is
not directly used in the motion control of the robot, but only
in the motion generation. A 3D target position is retrieved
with the camera parameters and fed to a trajectory generator
for the quadruped robot Spot with a Kinova robotic arm.
The whole-body robot posture is optimized through inverse
kinematics to reach the desired position and the motion plan
is capable to leverage on the utility of legs to increase the arm
reachability and avoid collisions with a table. The platform
results to have 80% accuracy in grasping a ball placed at
different initial condition, but during fails the final grasping
position results far from the object. The authors relate the
problem either to inaccurate ball position estimation or to
possible discrepancy between the real and planned initial
robot condition. Additionally, the manipulator is velocity-
controlled, as commonly done for visual servoing, making
it stiff and not suitable for contexts where human and/or
unknown obstacles are in the robot proximity.

Similarly to [3], we tackle the problem of mobile manip-
ulation with a quadruped manipulator and vision in the loop.
More specifically, we propose a control pipeline for the SAG
of a target object, using an Eye-In-Hand RGB-D camera
mounted at the arm’s end-effector. In this work, we propose
a control approach that uses the joints of the wrist, made
up commonly by two or three small and compact actuators,
connected through lower inertia links, for the visual task.
The rest of the robotic manipulator kinematic chain and the
floating base is used to move the robot and position the
arm’s wrist for Searching, Approaching and Grasping. Based
on visual information, we generate a sequence of positions

and velocities, converted later to torques for the execution
of the SAG sequence. In contrast to the previous mentioned
papers, all the actuators are controlled through torque control
and an impedance control strategy is integrated to render
impedances, through legs, on the quadruped’s base and on
the arm, through the arm actuators. The impedance rendered
at the arm can be chosen to mitigate tracking errors, ex-
ternal disturbance attenuation induced by the floating base
and/or by an external source (e.g. manipulation, human
interaction). The proposed approach is validated with a set
of experiments on the 140 kg hydraulic, torque-controlled
quadruped HyQReal, with a torque-controlled 7-DoF Kinova
Gen3 arm as robotic manipulator. In summary, we highlight
the following contributions

• A kinematically-decoupled control approach that inte-
grates an IBVS scheme and impedance control. The
control approach maps the visual task only on the
wrist, exploiting low-inertia links for fast motion and
reactiveness, and the rest of the kinematic chain for
less demanding arm positioning. To the best of the
authors’ knowledge, this is the first time visual servoing
is integrated on a fully torque-controlled quadruped
manipulator.

• A sequence of behavior and control signals for the
Search, Approach and Grasp with a torque-controlled
quadruped manipulator.

• Experimental demonstration and assessment of the ap-
proach on a quadruped manipulator, showing active
compliance and visual servoing in presence of external
disturbances, the ability to execute the SAG pipeline,
and to track a fast-moving object.

The paper is organized as follows: Section II presents
the dynamic model and the motion control of the robot.
Section III describes how the whole body motion of the
platform is generated. Section IV describes the experiments
and discusses the results. Section V closes the paper with
conclusions and future work.

II. MOTION CONTROL

A. Robot Model

The full rigid-body dynamics of a legged manipulator
can be described by the set of dynamic equations in
(1), where M is the inertia matrix, u̇ the stacked vector
of generalized accelerations, h comprises the gravity,
Coriolis and Centrifugal terms, τ the actuation torques.
The subscripts b, l, a, and e stand for base, legs, arm
and arm’s end-effector, respectively. The stacked vector of
generalized accelerations u̇ = [q̈T

b , q̈
T
l , q̈

T
a ]

T ∈ R6+nl+na

denotes the linear and angular accelerations of the base
q̈b = [ẍT

b , ẇ
T
b ]

T ∈ R6 and the rest of the limb joint
accelerations. Fg ∈ R3nc are the ground reaction forces,
where nc denotes the number of contact feet; Fe ∈ R3

denotes the external force acting on the arm’s end-effector.
Fg and Fe are mapped respectively to the base through
the contact Jacobians JT

st and JT
e . JT

e,a ∈ R6×na is the
Jacobian matrix from base to end-effector.
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B. Base Controller

The base of a legged manipulator is commonly considered
as the Trunk, in which various limbs are connected to. In this
work, we use the Trunk Controller proposed in [27], that
imposes a desired wrench on the base, W d

b ∈ R6, computed
based on position and rotation errors, and it gets mapped to
ground reaction forces, Fg , considering friction, unilaterality
constraints, and force limits of each stance leg (2) as

min
Fg

∥∥∥∥[ I · · · I
[pbc1 ]× · · · [pbcn ]×

]
Fg −W d

b

∥∥∥∥2
Q

+ ∥Fg∥2R

s.t. d ≤ CFg ≤ d (2)

where pbc ∈ R3 is the relative distance of the foot in contact
with respect to the base, [pbc]× denotes the skew-symmetric
matrix of vector pbc, C is the inequality constraint matrix,
d and d are lower/upper bound respectively that ensure that
the ground reaction forces lie inside the friction cones and
the normal components of the forces are bounded by some
user-defined limits. The first term in the cost represents the
tracking error between the actual and the desired wrench,

W d
b = [F d

b

T
,T d

b

T
]
T

, defined as

F d
b = Kb(x

d
b − xb) +Db(ẋ

d
b − ẋb) (3)

T d
b = Dr(w

d
b −wb) +Krer (4)

where F d
b and T d

b are respectively the desired force and

moment for the base, i.e. W d
b = [F d

b

T
,T d

b

T
]
T

. We define
as er the rotational error, Dr ∈ R3×3 and Kr ∈ R3×3

diagonal gain matrices for the derivative and proportional
term, respectively. For further implementation details on the
friction constraints, we refer to [27]. To guarantee a better
motion tracking for the base, we compensate the dynamic
coupling effects induced by the legs and arm on the base,
using the dynamic model in (1).

C. Leg Controller

We compute the torques for each leg by superimposing two
control actions: a feedforward term, τff , obtained mapping
Fg from (2) to torques through the stance Jacobian, i.e.
τff = −JT

st,lFg ; a feedback term in the form of a PD
controller. The second term is needed to track swing leg
trajectories. Hence, the total torque for each leg is computed
as

τl = τff + PD(ql, q̇l, q
d
l , q̇

d
l ) (5)

For the trajectory generation of the legs we exploit the
structure of the Reactive Control Framework [28].

D. Arm Controller

The kinematic chain of common manipulators can be
split into two groups: what we name as Shelbow group,
comprising shoulder and elbow joints highlighted with blue
in Fig.1, and the wrist, consisting of two or three compact
joints highlighted with green in Fig.1. Commercial arms, like
Kinova Gen3 [29] and Franka-Emika [30], have this type
of structure, where the last three joints at the wrist have
smaller maximum torque peak and are connected through
smaller links. The idea of this work is to use the former
group to establish an impedance connection with a desired
position for the wrist. Throughout the manuscript, we refer
to wrist position as the origin of the wrist frame (denoted
as WR in Fig. 1). For searching, approaching or grasping
an object, the desired wrist position is normally defined by
the camera and target position. Instead, the wrist is used for
tracking an end-effector’s trajectory when a target is not in
the view of the camera, and to keep the target in the view of
the camera once found with the visual feedback received by
the Eye-In-Hand camera. The Cartesian impedance control
imposed at the wrist position is applied using the Shelbow’s
joints and impedances are rendered in the Horizontal Frame
(a reference frame whose xy plane is always horizontal and
its x axis always aligned to the x axis of the robot’s base)
[28], to reduce cross-coupling effects with the base, as

τshelbow = JT
sh

[
Ksh

p (xd
wr − xwr) +Ksh

d (ẋd
wr − ẋwr)

]
+

+ hsh (6)

where hsh is the gravity, Coriolis and Centrifugal torques,
Jsh ∈ R6×4 is the Shelbow Jacobian matrix obtained
extracting the first four columns from Je,a, Ksh

p ∈ R3×3

and Ksh
d ∈ R3×3 are virtual springs and dampers gains.

Instead, xd
wr ∈ R3 and xwr ∈ R3 are the desired and current

Cartesian positions of the wrist, while ẋd
wr ∈ R3 and ẋwr

∈ R3 are the desired and current Cartesian linear velocities
of the wrist. Both current and desired positions, as well
as velocities, of the wrist are expressed in the Horizontal
Frame. For the wrist, the motion control law is generated
according to the given reference. During search of the object,
the reference is an end-effector trajectory which is tracked
generating the wrist torques as

τwr = JT
wr

[
Kwr

pc (x
d
e − xe) +Kwr

dc (ẋ
d
e − ẋe)

]
+ hwr (7)

where Jwr ∈ R6×3 is the wrist Jacobian matrix obtained ex-
tracting the last three columns from Je,a, which dependency
on the Shelbow joints is omitted. Instead Kwr

pc ∈ R3×3 and
Kwr

dc ∈ R3×3 are virtual springs and dampers gains. The
terms xd

e ∈ R3 and xe ∈ R3 are the desired and current
Cartesian positions of the end-effector, while ẋd

e ∈ R3 and
ẋe ∈ R3 are the desired and current Cartesian linear veloc-
ities of the end-effector. Both current and desired positions,
as well as velocities, of the end-effector are expressed in the
Horizontal Frame. When vision is activated, e.g. when an



object is in the field of view of the camera, then joints’
velocities for the wrist are retrieved, and used to obtain
setpoints for joints’ positions by integration. These joints’
position and velocities are tracked to generate the torques
for the wrist as

τwr = Kwr
pj (q

d
wr − qwr) +Kwr

dj (q̇d
wr − q̇wr)

]
+ hwr (8)

where Kwr
pj ∈ R3×3 and Kwr

dj ∈ R3×3 are virtual springs
and dampers gains. Instead qd

wr ∈ R3 and qwr ∈ R3 are
the desired and current wrist joints positions, while q̇d

wr ∈
R3 and q̇wr ∈ R3 are the desired and current wrist joints
velocities.

III. MOTION GENERATION

In this section, we describe the three main phases of our
proposed method that lead to the grasping of an object:
Search, Approach and Grasp.

A. Search:

To guide the camera along the search phase, we use an
heuristic trajectory that avoids robot singular configurations
and self-collisions. The trajectory paths for the wrist position
and end-effector are illustrated in Fig. 2. First, the arm is
brought to a home configuration where the links are kept
away from the base. Then a circular motion, centered around
the arm’s base, is tracked by the wrist position using (6)
(red path in Fig. 2). Along this first phase, singularities
are avoided by keeping the radius of this circular trajectory
lower than the wrist maximum allowable distance from the
arm’s base. To avoid self-collisions and image occlusions,
the scanning behind the quadruped is done in two steps: first
from the left and later from the right of the robot trunk.
The two points that define the limits of the wrist position
motion path are indicated in Fig. 2 as A and B. Once the
wrist is in one of these two positions, two circular trajectories
centered around it are used to search backward with the arm’s
end-effector, defining xd

e and ẋd
e . Hence the wrist is rotated,

keeping the roll and the pitch of the end-effector fixed. If
the second end-effector backward scan is completed and no
object is detected, the arm returns to the home configuration
and the robot is commanded to rotate around itself by 180
degrees and restart the wrist position and end-effector search
trajectories. We highlight that the only reason for which the
area behind the robot has not been assigned to the arm is to
avoid occlusions with trunk and legs.

B. Approach:

Once the object has been detected, the robot has to align
itself to approach it. The wrist joints are controlled using the
joint impedance controller (8) and for the Shelbow joints
the Cartesian impedance controller (7). For the alignment,
first the wrist is positioned at the intersection between its
circular search trajectory (solid red line in Fig. 2) and the
line segment connecting the object and the origin of the robot
base frame. If the intersection is located on the dashed part
of the red circle, the wrist position is set at point A or B
(depending on the search side). Successively, the base is

Fig. 2: Illustration of HyQReal and its arm at various
postures along the trajectory paths executed during the object
Search phase. The light-green dots, A and B, represent
the wrist limit positions on its circular path around the
arm’s base. The solid red semi-circle and the green circles
represent, respectively, the circular searching motion that can
be executed by the wrist position and the end-effector (the
dashed red path is not allowed to avoid self-collisions and
camera occlusions).

aligned to the object by commanding a heading velocity until
the longitudinal axis of the robot aligns with the direction of
the object.

In order to keep the object in the camera’s field of
view during the whole alignment phase, the references for
the controller in (8) are given by the visual servoing. In
particular, we consider as features the coordinates of a pixel
in the image projection plane and we define s∗ as desired
value to be the center pixel in the projection plane, which is
(0, 0). The object detection algorithm outputs the bounding
box of the detected object, and we use the coordinates
of its center as current features s. We define the feature
error as e = s − s∗, which has to be minimized. The
interaction matrix [31] or image Jacobian [32], here referred
as Ls ∈ Rk×6, where k is the number of features, links how
the features vary if the camera moves. The interaction matrix
of a 2D point in the projection plane is described as follows

Ls =

[
− 1

Z 0 x
Z xy −(1 + x2) y

0 − 1
Z

y
Z (1 + y2) −xy −x

]
where x and y are the coordinates of the point in the
projection plane and Z is the 3D distance from the camera
to the point in Cartesian space. It is common in the literature
to refer to the estimated version of the interaction matrix as
L̂s, because Z depends on the camera calibration and on
the quantities that are measured. Using only these features,
the end-effector is free to change its roll orientation since all
the rotations around the z axis of the camera are allowed.
We impose the camera to stay always oriented parallel to
the base, adding a third feature, sϕ, which constrains such
rotation of the camera. When the camera is oriented parallel
to the base, its x axis is always perpendicular to the z axis



of the base frame. Hence, we impose

xc · (Rcbzb)
T = 0 (9)

where we denote by xc the camera x axis, zb the base z axis,
and Rcb ∈ R3×3 the rotation matrix from base to camera
frame. The result of (9) is (Rcb)zx = 0, with (Rcb)zx being
the component at the third row and first column of Rcb.
The interaction matrix for sϕ, can be derived knowing that
the translations of the camera cannot change its orientation,
hence the first three columns of Lsϕ are zero, and the
time derivative of a rotation matrix is the rotation matrix
multiplied by the skew-symmetric of the angular velocity

Lsϕ =
[
0 0 0 0 −(Rcb)zz (Rcb)zy

]
(10)

where (Rcb)zy and (Rcb)zz are the components at the second
column and third column in the third row of Rcb. Stacking
the features, we obtain the following error vector

es =
[
x y (Rcb)zx

]T
(11)

To impose an exponential decay of the error, we derive the
twist of the camera expressed in the camera frame as

ξdc = −λL̂+
s es (12)

where Ls ∈ R3×6 denotes the interaction matrix of the
three stacked features and L̂+

s denotes its estimated Moore-
Penrose pseudo-inverse. The desired camera twist is mapped
to the desired joint velocities and positions for the wrist asq̇d

wr = J+
wr

[
RT

cb 0

0 RT
cb

]
ξdc

qdwr,i = qdwr,i(0) +
∫ T

0
q̇dwr,i dt, ∀i = 1, .., N

(13)

where N is the number of wrist joints, qdwr,i(0) the initial
desidered joint configuration and T the spanned time interval.

Once the base is aligned with object, the wrist position
is kept fixed, hence the references for (6) do not change.
For the end-effector, the wrist is controlled as in (8) using
the reference of visual servoing generated by (13). Instead
regarding the base, its heading is controlled to be aligned
with the one of the arm’s end-effector and a walking forward
velocity is commanded until the robot reaches the object
proximity. In contrary to the Search, throughout most of the
Approach phase, the robot’s base is moving, and the effects
of the legs are indirectly transmitted to the camera through
the arm. We leverage on the capabilities of the impedance
controller implemented at the Shelbow to mitigate tracking
and external disturbance (induced by the base or any other
source).

C. Grasp:

We enter into the Grasping phase when the robot is in the
proximity of the target object and it can compute a grasping
pose, i.e. the final position and orientation of the arm’s
end-effector. During the execution of this phase, the wrist
position is kept at the same height of the object, by using
the impedance controller (6), and its longitudinal distance
is reduced. The latter choice is motivated by the fact that

closer the robot moves to the grasping pose, the bigger the
object gets in the camera image and the higher the chance
for object detection to fail. Instead, the wrist is controlled
using (8) to keep the object in sight thanks to the reference
generated by visual servoing. Subsequently, the robot’s base
walks to reach the object within the arm workspace. Once
that distance is reached, to leverage on the rotational DoFs,
the base pitch is commanded to lean down or up, according
to the estimated 3D object position as

θdb = arctan

(
zso
xso

)
(14)

where zso and xso denote the relative position of the object
with respect to the shoulder, along z and x axis directions
of the base frame, respectively. To complete grasping, the
Shelbow group and the wrist are commanded to reach
the previously computed grasping position. During this last
phase, visual servoing is not active anymore being the camera
too close to the object, and the grasping is performed open-
loop. Reached the grasping pose, the gripper is commanded
to close, the base adjusts its pitch, and the arm is repositioned
to a default posture. The latter arm configuration can be in
general optimized for avoiding self-collisions and increasing
manipulability.

IV. RESULTS

We performed several experiments to validate the pro-
posed approach using our 140 kg hydraulic quadruped robot,
HyQReal, and a Kinova Robotic Gen3 arm with 7-DoF. A
Realsense D435i [33] is mounted at the arm’s end-effector as
shown in Fig. 1. We performed three types of experiments: a)
disturbances applied on the arm on both positive and negative
y-z axis of base frame while the robot is performing a trot
in place (Section IV-A); b) the grasp of a bottle positioned
at a fixed, unknown location in the room and out of the
initial camera view (Section IV-B); and c) the grasp of
a bottle thrown between two humans (Section IV-C). We
used color segmentation throughout all the experiments, as
object detection algorithm, with blue as color to recognize.
The visual servoing gain λ is set to 3.0. For locomotion,
a walking-trot gait is used, characterized by the alternated
motion of diagonal leg pairs with a step frequency set to 1.3
Hz and a step duty factor equal to 0.6 (the duty factor is the
ratio between the time a leg is in stance over the entire step
period). To manage the sequence of actions, we developed
a Behavior Tree based on the open-source project [34]
(version 3.8). The Behavior Tree provides reactive behaviors
to unforeseen events, such as the loss of the object from the
camera view. All the experiments described in the following
sections are also included in the accompanying video1.

A. Visual servoing with external disturbance

During this first experiment, the quadruped manipulator is
positioned in front of a bottle at a distance of around 1 m,
and is commanded to keep the object in the field of view

1The accompanying video is also available at the following YouTube link:
https://www.youtube.com/watch?v=ztMl52v3ncY

https://www.youtube.com/watch?v=ztMl52v3ncY
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Fig. 3: Response of visual features, x-y center position of
detected object (bottle) in the projection plane. Phases where
visual error is higher coincide to time interval of interaction
with human.

of the camera while trotting. The desired robot behavior is
similar to the one expected for the Approach phase, where
the quadruped manipulator has to walk and keep the object
in sight. During the experiment, a disturbance is applied at
the forearm by a human. First, the external forces are applied
along (positive and negative) lateral and vertical directions,
respectively along y and z axis of the robot’s base frame.
For the arm, the active controllers are: (6) for the Shelbow
group, and (8) for the last three joints of the manipulator. The
Cartesian impedances (6) along y, and z direction are set to:
Ksh

p = 50N/m, Ksh
d = 5Ns/m. The impedance gains for

the joint impedance controller, used by the last three joints,
in (8) are set to: Kwr

pj = 100N/rad and Kwr
dj = 5Ns/rad.

When the human applies the force, the camera view is
disturbed, hence the feature tracking is degraded, as shown in
Fig. 3. Due to the impedance control strategy applied at the
arm’s wrist, the arm responds in a compliant way and does
not try to rigidly hold its position as it would have done under
velocity control. Additionally, the decoupled approach allows
to have low impedances at the wrist because the Shelbow
joints are not used for tracking of visual features. In terms
of design, a trade-off can be established between position
tracking accuracy and compliance, according to the context
in which the robot has to operate. From Fig. 4, when the
velocities return to zero, after a disturbance is applied, the
visual features (x-y in projection plane) are zero, i.e. the
object is back centered in the camera, as shown in Fig. 3
for t ≈ 8s, t ≈ 12s, t ≈ 17s and t ≈ 21s. This means
by the time the arm reaches the maximum elongation, the
camera still has the object centered, as shown in the recorded
sequence from Fig. 5.

B. SAG of a bottle

During this experiment, the quadruped manipulator has to
execute the whole SAG pipeline. As it is possible to see
from the picture on the left corner of Fig. 6, the Eye-in-
Hand camera is not pointing towards the object at the start.
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Fig. 4: Translational Cartesian velocities, relative to the Base
frame, for arm’s wrist along y (top) and z axis (bottom).
Peaks of velocities correspond to maximum accelerations
caused by human force on the arm.

Fig. 5: Recorded sequence of HyQReal and its arm with re-
spect to the object (left column) and the detected object from
the camera view (right column). In the first row, the robot
is trotting in place and, in the middle and bottom rows, the
arm’s elbow joint is about its maximum displacement from
the initial position along lateral and longitudinal directions,
respectively. The displacement is caused by the interaction
with a human.

Hence, the robot uses its arm to rotate its camera around
the trajectory defined in Section III-A, and it executes the
Approach phase defined in Section III-B after the bottle is
detected. The gains used for the active controllers during the
Approach phase are defined as the previous experiment IV-



Fig. 6: Recorded sequence of HyQReal with a Kinova arm
during the execution of the SAG pipeline. The snapshot
sequence is read from the top to the bottom according to
the numbers and light green arrows. Pink arrows indicate the
localization of the bottle for the first three snapshots of the
sequence (i.e., for S1, S2, and S3). At S1 the robot searches
for the object. At S2 the object is detected. At S3 the robot
adjusts its orientation w.r.t. the object. From S4 to S6 the
robot approaches the object performing a walking-trot. From
S7 to S15 the robot moves its base and arm to prepare and
execute the grasping.

A. At the end of the Approach phase, the robot is placed at
0.7 m far from the object. We relied on the Realsense depth
estimation measurement to position the robot correctly in
front of the object. The grasping phase spans along the last
three rows of pictures in Fig. 6. From the bounding box of
the detected object, we retrieve the pixel coordinates of its
center, and we use this information, together with the depth
measurement and the intrinsic parameters of the camera, to
retrieve the 3D object position. As mentioned in Section
III-C, in the proposed approach, the grasping position is
calculated and then the base finalizes its last adjustments
to bring the object inside the arm’s workspace. Hence, we
highlight here that the accuracy of the final grasping position
depends on the accuracy of locomotion to properly position
the base, and on the state estimation. From trials, we did not
experience the need of re-calculating the grasping position
during the Grasping phase.

C. Visual tracking of a fast moving bottle

During this experiment we challenged our system to keep
a bottle in sight when throwing it between two people. More

Fig. 7: Recorded sequence of HyQReal with a Kinova arm
during the execution of the SAG pipeline while performing a
walking-trot. The snapshot sequence is read from the top to
the bottom according to the numbers and light green arrows.
Pink arrows indicate the localization of the object in all the
snapshots. The target object, handled by the first person, is
detected at the first two snapshots (i.e. S1 and S2). From
S3 to S7 the object is thrown to the second person. The
reactiveness of the proposed method allows to maintain the
object tracking from the launching to the catching. From
S8 to S10 HyQReal approaches the object. The grasping is
prepared and executed from S11 to S15.

specifically, the quadruped manipulator starts to execute the
SAG pipeline targeting the bottle handled by one of the two
people present in the room. Afterwards, the bottle is thrown
and passed from one to the other person. Along the entire
bottle trajectory, the arm’s end-effector is able to keep the
bottle in the camera field of view, as shown in the image
sequence of Fig. 7; the error in the visual features drives the
camera to point to the flying object. Thanks to the decoupled
approach, the wrist keeps the object centered and it acts as
a helm, pointing towards the direction the base has to walk
to. The reactivity of the wrist justifies the choice and the
benefits of mapping directly the visual task to the last three
joints of the manipulator. By executing the SAG pipeline, the
quadruped manipulator is driven to grasp the bottle from the
hands of the human as shown in the accompanying video.

V. CONCLUSIONS

In this work, we presented a control pipeline for the
Search, Approach and Grasp of an object using a legged
manipulator. The proposed approach defines a behavior se-
quence for the base and arm to solve the SAG problem,
which integrates IBVS to maintain the object in the field of
view of the camera and impedance control to render an active



compliant behavior on the base and at the level of the wrist
position. The main idea of the paper relies on assigning the
visual task to the wrist, comprised normally by the last two
or three joints, and the rest of the kinematic chain to place the
wrist position in space. To validate the control approach, we
executed experiments where the robot uses visual servoing
and gets disturbed. The results show the arm’s compliance
and its ability to keep the object centered, thanks to the fast
motions of the wrist. Additionally, we executed the complete
SAG pipeline for grasping a bottle standing on a stool and
to track and grasp a bottle thrown between two humans.
As future work we aim at dealing with more complex
surroundings, by considering obstacles and exploiting the
robot positioning and posture to improve manipulation tasks.
Additionally, in order to deploy this control architecture in
more complicated and crowded environments, more robust
neural network architectures are needed to properly detect
and segment objects.
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