
Received September 15, 2021, accepted October 3, 2021, date of publication October 8, 2021, date of current version November 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3118957

Model Predictive Control With Environment
Adaptation for Legged Locomotion
NIRAJ RATHOD 1,2, ANGELO BRATTA 2,3, MICHELE FOCCHI 2,
MARIO ZANON 1, (Member, IEEE), OCTAVIO VILLARREAL 2,
CLAUDIO SEMINI 2, (Member, IEEE), AND ALBERTO BEMPORAD 1, (Fellow, IEEE)
1IMT School for Advanced Studies Lucca, 55100 Lucca, Italy
2Dynamic Legged Systems Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
3Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, 16145 Genova, Italy

Corresponding author: Niraj Rathod (niraj.rathod@imtlucca.it)

ABSTRACT Re-planning in legged locomotion is crucial to track the desired user velocity while adapting to
the terrain and rejecting external disturbances. In this work, we propose and test in experiments a real-time
Nonlinear Model Predictive Control (NMPC) tailored to a legged robot for achieving dynamic locomotion
on a variety of terrains. We introduce a mobility-based criterion to define an NMPC cost that enhances
the locomotion of quadruped robots while maximizing leg mobility and improves adaptation to the terrain
features. Our NMPC is based on the real-time iteration scheme that allows us to re-plan online at 25Hz with
a prediction horizon of 2 seconds. We use the single rigid body dynamic model defined in the center of mass
frame in order to increase the computational efficiency. In simulations, the NMPC is tested to traverse a set
of pallets of different sizes, to walk into a V-shaped chimney, and to locomote over rough terrain. In real
experiments, we demonstrate the effectiveness of our NMPC with the mobility feature that allowed IIT’s
87 kg quadruped robot HyQ to achieve an omni-directional walk on flat terrain, to traverse a static pallet,
and to adapt to a repositioned pallet during a walk.

INDEX TERMS Legged locomotion, mobility, nonlinear model predictive control, online re-planning.

NOMENCLATURE
The list of most commonly used symbols used in this article.
Acronyms:

CoM Center of Mass.
GRFs Ground Reaction Forces.
NMPC Nonlinear Model Predictive Control.
RTI Real-Time Iteration.
SRBD Single Rigid Body Dynamics.
VFA Vision-based Foothold Adaptation.
WBC Whole-Body Control.
ZMP Zero Moment Point.

Notation:

nx Number of states.
nu Number of control inputs.
na Number of model parameters.
T Prediction horizon.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yangmin Li .

N Number of control intervals.
µ Friction coefficient.
xp ∈ Rnx×(N+1) Predicted states by NMPC.
up ∈ Rnu×N Optimal control inputs from NMPC.
xref ∈ Rnx×(N+1) Reference states.
uref ∈ Rnu×N Reference control inputs.
pc ∈ R3 Robot’s CoM position.
vc ∈ R3 Robot’s CoM velocity.
8 ∈ R3 Orientation of robot’s base.
ω ∈ R3 Angular velocity of robot’s base.
fi ∈ R3 GRF at ith foot.
pf,i ∈ R3 Foot position of ith foot.
δ ∈ R4 Contact status.
Cphf ∈ R12 Hip-to-foot distance in CoM frame.

I. INTRODUCTION
The main advantage of legged robots with respect to their
wheeled counterpart is their ability to traverse complex and
unstructured environment such as forests, obstacles, and
debris. However, the control of legged robots poses complex
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problems related to underactuation (the body is controlled
only indirectly through the legs), and to the hybrid nature
of the forces required to generate motion, since the robot
needs to establish and interrupt contact between its feet and
the ground. The control design for legged robots was ini-
tially dealt with by using heuristic approaches which yielded
successful results such as in the walking machines from
Raibert [1], the virtual model control of Pratt et al. [2] and in
the heuristic locomotion planning for quadrupedal robots by
Focchi et al. [3]. However, heuristic approaches have several
limitations, for example: 1) they cannot be easily generalized
to all kinds of terrain and motions; 2) they cannot account
for the future state of the robot hence, they have no possi-
bility to guarantee physical feasibility of the planned trajec-
tories. The challenge of avoiding these undesirable myopic
behaviors in heuristic planning approaches has motivated the
research towards new optimization-based predictive locomo-
tion planning.

Formulating the locomotion planning as an optimization
problem allows one to represent high-level locomotion tasks
as cost functions and system dynamics using constraints.
Besides robot dynamics, the locomotion tasks should also
respect the contact dynamics such as unilateral force and
friction cone constraints, that are critical to stabilize the
locomotion. The use of optimization techniques to design
Whole-Body Control (WBC) has enabled legged robots to
traverse soft terrains [4] and to be versatile in terms of type
of gait and motions that a legged robot can achieve [5].
The aforementioned examples are based on the solution of a
Quadratic Program that only considers the instantaneous [6]
effects of the joint torques on the robot’s base. Further, similar
to heuristic approaches mentioned earlier, these approaches
do not consider the information about the future states of the
robot and hence cannot assure recursive feasiblity.

In order to address this issue, several approaches make use
of Trajectory Optimization (TO)-based locomotion planning
considering the full dynamics of the robot [7], [8]. However,
these approaches usually suffer from high computational time
hence they are often restricted to offline (open-loop) use.
In general, offline planners [9], [10] neither adapt to quick
terrain changes nor cope with state drifts and uncertainties.
To address this issue the concept of online re-planning can
be used. Online re-planning can intrinsically cope with the
problem of error accumulation in planned motion that is
common in real scenarios.

For online re-planning, MPC has gained broad interest
in the robotics community for legged locomotion. More-
over, the intrinsic feedback mechanism offered by MPC can
compensate for modeling errors and disturbances acting on
the system provided that the MPC is executed at a suffi-
ciently high rate in closed-loop. A careful choice of the
dynamic model inside MPC formulation is typically required
to achieve a desired re-planning frequency in closed-loop,
given the limited computational resources available for online
computations. For example, using a full dynamics model of
legged robots inside MPC [11], [12] with long prediction

FIGURE 1. IIT’s quadruped robot HyQ traversing a pallet with the mobility
enhanced real-time NMPC.

horizonmay result in an optimization problemwhich requires
excessive computations for real-time deployment at high
sampling rates. Using approximate models is a way to reduce
the complexity of the optimization, trading the accuracy with
computational efficiency. Following this line, [13] used a
Centroidal Dynamics (CD) plus a full-kinematic model to
enforce the kinematic limits in TO to plan complex behaviors
on the humanoid robot Atlas. The CD model considers con-
tact forces as input and links the linear and angular momen-
tum of the robot to the external wrench [14].

A simplified version of the CD model is the Single Rigid
Body Dynamics (SRBD) model where the inertia of the legs
is neglected (assumption of massless legs) and the robot’s
body and legs are lumped into a single rigid body. This model
is well suited for quadrupeds, since they usually concentrate
their mass and inertia in the robot base, unlike humanoids.
The SRBD model was used for TO [15] and MPC [16] to
jointly optimize for footholds, Center of Mass (CoM) trajec-
tories and contact forces. By further linearizing the angular
part of the dynamics of the SRBD, [17] was able to achieve a
variety of quadrupedal gaits in experiments but their approach
was not suitable for motions that involve large variations
from the horizontal orientation. The simplest among all the
approximate models mentioned earlier is the Linear Inverted
PendulumModel (LIPM) and it has been used insideMPC for
quadruped [18] and biped [19] locomotion. However, there
are two main limitations in LIPM, namely it neglects angular
dynamics and assumes constant robot height. Additionally,
it does not account for friction cones, so that the contact
stability on non-flat terrain cannot be guaranteed.

While models play an important role in obtaining com-
putationally light MPC formulations, the choice of solution
method is also paramount to achieve fast online re-planning
with MPC. A Differential Dynamic Programming (DDP)
based approach demonstrated the real-time performance with
whole-body MPC [12] on HRP-2 humanoid. Recently, [20]
proposed a DDP-based MPC using a kinodynamic model
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which re-plans at a frequency of 15Hz with a prediction
horizon of 1 s on a quadruped. The main drawback of DDP
based approaches is the difficulty in implementing hard-
inequality and switching constraints. Hard-inequality con-
straints need to be implemented as penalties (e.g., with
relaxed-barriers) [21] while the switching constraints are for-
mulated using Augmented Lagrangian methods [22], [23].
Though not obvious at first sight, these methods are essen-
tially equivalent to direct optimal control based on multiple-
shooting [24] in combination with some form of Nonlinear
Programming (NLP) solvers using barrier functions in the
real-time iteration scheme [25]. One such framework is pro-
vided by acados [26].
In addition to DDP-based MPC, there also exist a few

implementations of NLP-based MPC for legged robots. One
such NMPC implementation with CoM dynamics plus full
kinematic model was demonstrated in [27] using a Sequen-
tial Linear Quadratic (SLQ) algorithm for a trotting gait on
flat terrain. Neunert et al. [11] achieved a fast re-planning
frequency of 80-170 Hz for a small prediction horizon of 0.5 s
(125 nodes) with their NMPC using the full dynamics of the
robot, and optimizing foot locations, swing timing, and loco-
motion sequences along with full body dynamics. However,
in the real experiments they have only demonstrated slow
trotting on flat terrain. Moreover, since their approach does
not consider the map of the terrain, it has limited application
on uneven terrain conditions. An interesting observation is
that they did not see a noticeable degradation in the closed-
loop performance of the NMPC when the re-planning fre-
quency was dropped until 30 Hz, demonstrating that the
predictive nature of the MPC empowers the robot to tolerate
much lower re-planning frequency. A similar observation
was made in [28] with an MPC scheme which optimizes
foot locations, but requires a heuristic conditioning of the
cost function. In their experiments, the robot is stable if the
re-planning occurs at 20 Hz, unstable for lower frequencies
and the performance improvement is observed over 40 Hz.

The aforementioned approaches have been successful in
controlling legged robots, but neglected an important aspect
of these robots, which is usually referred to asmobility. In this
paper, we define the mobility as the attitude of the robot
leg to arbitrarily change its foot position [29]. We noticed
that maximizing mobility improves terrain adaptation hence
it is advantageous to account for it in the motion planning
of legged robots. Furthermore, as discussed in Section IV-A,
adding mobility in the NMPC cost eliminates the need to
specify references for the roll, pitch and height of the robot.

To achieve kinematically suitable configurations for the
legs, a common heuristic is to align the robot basewith the ter-
rain inclination (estimated in [3] via fitting an averaging plane
through the stance feet). This approach aims to bring the legs
as close as possible to the middle of their workspaces in order
to avoid the violation of the kinematic limits. Optimization of
mobility allows to achieve a similar behaviour in an automatic
way. Fankhauser et al. in [30] maximized mobility by encod-
ing it in a cost function that penalizes the distancewith respect

to a default foot position. Recently, Cebe et al. [31] imple-
mented TO using an SRBD model and also incorporating the
feet positions in the optimization. They re-plan only at the
feet touchdowns due to the high computation demand of their
TO algorithm and showed experimental results on uneven
terrain. Since their planner does not plan during the swing
phase of the legs, they do not run their planner in an MPC
fashion. Apart from the previously mentioned contributions,
to the best of our knowledge no prior work has addressed the
mobility with MPC in legged locomotion.

A. PROPOSED APPROACH AND CONTRIBUTION
In this work, we demonstrate in experiments with our 87 kg
Hydraulically actuated Quadruped (HyQ) robot [32] that a
suitably formulated NMPC can tackle rough terrain locomo-
tion, account for leg mobility, and provide the optimal base
orientation, while being real-time feasible. Indeed, optimiz-
ing for leg mobility allows our NMPC to devise a robot base
orientation and height that improves locomotion on rough
terrain.

This is particularly useful to achieve environment adap-
tation on rough terrains. Another advantage is that minimal
heuristics is required from the user i.e., no reference trajectory
for the robot’s height, and its base roll and pitch orientation
is needed.

This work is a system integration on the same line of our
previous work [33]. However, while in [33] only offline opti-
mization was performed, here we achieve real-time feasible
online replanning in an MPC fashion. To achieve this goal:

a) We consider a simplified SRBD model that describes
the angular and translational dynamics of the robot base
but neglects the dynamics of legs.

b) We employ the real-time iteration (RTI) scheme [25],
[34], [35] that allows us to run our NMPC online with
the prediction horizon of 2 s (50 nodes) as opposed to
the 0.5 s (125 nodes) used by [11]. Differently from [31]
(that re-plans at each foot touchdown event), we contin-
uously re-plan at the rate of 25Hz.

c) We run our NMPC on a single computer along with the
rest of our locomotion framework1 unlike in [11], [31]
where they use dedicated computers for their TO and
NMPC, respectively.

We show in simulation the robot traversing a set of pallets
of different dimensions placed relatively at varying distances,
walking into a V-shaped chimney and lastly over a randomly
generated rough terrain. We present Experimental results that
demonstrate the capability of our NMPC to generate an omni-
directional walk and to traverse a pallet for our quadruped
robot HyQ (see Fig. 1). We tested the re-planning capability
of our approach by pushing a pallet in front of the robot while
walking, such that the control algorithm has to re-plan online
in order to adapt to a dynamically changing environment.
To summarize, the contributions of our work (in order of
importance) are as follows:

1Except the perception related modules that run on a dedicated computer
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FIGURE 2. Block diagram of the planning pipeline with the NMPC in our locomotion framework. The reference generator provides the references
(xref, uref) to NMPC after receiving the user inputs. Then, the NMPC passes optimal state xp and control xp trajectories to the Whole-Body Controller. The
torque τd is given as reference to the low-level joint torque controller τ j. The state estimator provides the state estimation x̂ to the required blocks.
Finally, the heightmap is generated by Grid Map and given to the reference generator.

• Major experimental results are presented in Section VIII
where we demonstrate the capability of our NMPC
planner to generate an omni-directional walk and rough
terrain locomotion for our quadruped robot HyQ,
by exploiting an online evaluation of the map of the
terrain and using on-board state estimation.

• Additional (minor) contributions are:
a) We introduce a cost term which accounts for mobility

by penalizing hip-to-foot positions that do not provide
the highest mobility. To the best of our knowledge,
this is the first time that mobility has been addressed
with MPC.

b) The generation of the reference trajectory for the
NMPC takes into account premature and delayed
touchdown of the feet as well as continuously adjust-
ing the footholds according to the robot body motion
and the terrain features.

c) We use a parametric robot model that results in
smaller NMPC formulation.

B. OUTLINE
The paper is organized as follows: Section II gives an
overview of our planning pipeline whereas Section III
describes the NMPC setup. The leg mobility and other fea-
tures are explained in Section IV, whereas the generation of
the references and theWBC are detailed in Sections V andVI,
respectively. We then summarize the RTI scheme for our
NMPC in Section VII. Further, Section VIII illustrates simu-
lation and experimental results with the HyQ robot. Finally,
we draw the conclusions in Section IX.

II. LOCOMOTION FRAMEWORK
Fig. 2 illustrates the planning pipeline of our locomo-
tion framework. The reference generator, as discussed in
Section V, takes the user input (longitudinal, lateral and
angular velocity), schedule of the gait (e.g., a crawl) timing,
the initial state of the robot, and a map of the terrain to
generate reference trajectories for the state xref and control
input uref required by the NMPC. The reference genera-
tor also provides a vector of parameters a to the NMPC,
that includes foot locations and sequences of contact status.

The NMPC running at 25Hz delivers the optimal trajectories
of the state xp and control input up, as detailed in Section III.
All the components of the Whole-Body controller (high-

lighted with dashed box in Fig. 2) are discussed in Section VI.
The WBC interface interpolates the optimal state xp at a rate
of 250Hz to generate a desired signal xd for a Cartesian
virtual impedance controller [36]. The WBC interface also
computes the feedforward wrench Wd

ff that is added to a
feedback wrench Wd

fb that renders the Cartesian impedance.
Moreover, the WBC interface provides the joint position qd
and velocities q̇d to a Joint Space PD controller running
at 1 kHz. After acquiring the feedback and feed-forward
wrenches, a Quadratic Programming (QP) optimization com-
putes the vector of desired Ground Reaction Forces (GRFs)
fd accounting for the friction cone constraints and penalizing
the difference between fd and up coming from the NMPC
solution. Then, fd is mapped to the torque vector τ ∗ that is
added to the Joint Space PD torques τ fb resulting into the total
desired torque τ d. Ultimately, τ d is passed to a low-level joint
torque controller as reference [37].

An online state estimator [38] that runs at 500Hz provides
the estimation of the robot state x̂ to all the components
inside our locomotion framework that require it. A dedicated
on-board computer takes inputs from an RGB-D camera
(RealSense) mounted in front of the robot and generates a
2.5D heightmap at the rate of 30Hz using the Grid Map
library from [39]. This heightmap is later sent to the reference
generator.

III. NMPC
In our planning algorithm, we choose a real-time NMPC
formulation because it has the ability to handle both the non-
linear system dynamics and the constraints, explicitly. NMPC
is based on solving an Optimal Control Problem (OCP) given
the current state x̂0 of the system. Only the first element
of the optimized input trajectory is applied to the system,
then the state is measured and the OCP is solved again based
on the new state measurement to close the loop.

We define the decision variables as the predicted state
and control input with xp = {x0, . . . , xN } and up =
{u0, . . . ,uN−1}, respectively, such that an NLP formulation
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can be stated as:

min
xp,up

N−1∑
k=0

` (xk ,uk , ak)+ `T (xN ) (1a)

s.t. x0 = x̂0, (1b)

xk+1 = f (xk ,uk , ak) , k ∈ IN−10 , (1c)

h (xk ,uk , ak) ≤ 0, k ∈ IN−10 , (1d)

where, ` : Rnx × Rnu × Rna → R is the stage cost function;
`T : Rnx → R is the terminal cost function. The initial condi-
tion (1b) is expressed by setting x0 equal to the state estimate
x̂0 received from the state estimator. The vector of model
parameters ak is not optimized but it is computed externally
by the reference generator and provided to the optimization
problem formulation. The nonlinear system dynamics are
introduced by the equality constraints (1c). Finally, the path
constraints are included with (1d) which, for example, can be
bounds on the decision variables. The NLP (1) is defined for
a prediction horizon T that is divided into N discrete time
control intervals of lengths Ts = T

N . Hereafter, we will refer
to Ts as the sampling time.

A. COST
In our NMPC formulation we use a cost function of the form:

` (xk ,uk , ak) = `t + `m + `r, (2a)

`t = ‖ xk − xrefk ‖
2
Q + ‖ uk − urefk ‖

2
R, (2b)

`m = ‖ Cphfk − Cprefhfk ‖
2
M, (2c)

`r = ρ ‖ Kuk ‖2P (2d)

• The tracking cost (2b) is associated to state and con-
trol input and the references trajectories xrefk ,u

ref
k are

provided by the reference generator for each sampling
instance k (refer to Section V).

• The mobility cost (2c) is one of the contributions of
this work that accounts for improving the leg mobility
by penalizing the difference between the hip-to-foot
distance Cphf and the reference value Cprefhf of maximum
mobility. This cost allows the NMPC to optimize the
robot base orientation (e.g. align it to the terrain shape)
in order to increase the leg mobility which has as a
desirable consequence to stay far from kinematic limits
during locomotion. The derivation of Cprefhf is detailed
separately in Section IV-A.

• In some locomotion scenarios [36], to cope with uncer-
tainties in the contact normal estimation and increase
robustness to external disturbances, it is desirable to
have the GRFs fi as close as possible to the center of the
friction cone. This can be achieved with by penalizing
X -Y components of u in a frame K (see Fig. 3) that is
aligned to the normal of the contact and it is included in
our cost function by a control input regularization term
(2d), refer to Section IV-C for the details.

The positive definite weight matrices Q ∈ Snx+ ,R ∈ Snu+ ,
M ∈ S12+ , P ∈ Snu+ act as important tuning parameters in

the NMPC formulation. The regularization factor ρ decides
the trade-off between force robustness cost (2d) and both the
tracking (2b) and mobility (2c) cost. Finally, we define the
terminal cost `T =‖ xN −xrefN ‖QN and use the weight matrix
QN = Q for this cost.

B. ROBOT MODEL
The inertial frame W and the CoM frame C are shown
in Fig. 3. The CoM frame is aligned with the base of the
robot and its origin is located at the CoM. A variable with
left subscript denotes its frame of reference. For example Cω
represents the angular velocity of the robot base expressed in
the CoM frame C. Note that, unless explicitly specified, all
the relevant quantities in this paper are defined in the inertial
frame W . Throughout this paper we define (a, . . . , b) as the
column vector stacking any generic column vectors a, . . . , b.

FIGURE 3. HyQ schematic showing the inertial frame (W), the CoM
frame (C) attached to the CoM of the robot, and the contact frame (K).
The robot legs are shown in the default configuration.

We use a simplified reduced-order SRBD model [15]
defined in a 6D space that describes the translational and
angular dynamics of the robot while neglecting the dynamics
of its swinging legs. This is a valid approximation for theHyQ
robot because most of its mass is concentrated in the base,
as mentioned in [32] (the mass of the base is 61 kg and the
mass of each leg is 6.5 kg). The robot is approximated as a
rigid body with the inertia computed considering the robot
in a default leg configuration as shown in Fig. 3. We choose
to define the SRBD model in the CoM frame (specifically
the angular dynamics) because this choice yields a constant
inertia tensor. Thus, the angular dynamic equations are much
simpler i.e., less non-linear because the inertia tensor is not
time varying. In the SRBDmodel, GRFs are applied as inputs
to control the position and orientation of the robot base. The
SRBD model is:

mv̇c = mg+
4∑
i=1

δifi (3a)

CIc Cω̇ + Cω × CIcCω =
4∑
i=1

δiCpcf,i × Cfi (3b)
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where m is the robot mass, v̇c ∈ R3 is the CoM acceleration,
g is the gravitational acceleration, fi ∈ R3 is the ground
reaction force at foot i, CIc ∈ R3×3 is the inertia tensor
computed at the CoM frame origin, Cω̇ ∈ R3 is the angular
acceleration of the robot’s base, pcf,i ∈ R3 is the distance
between the CoM position pc ∈ R3 and the position pf,i ∈ R3

of foot i. We introduce binary parameters δi = {0, 1} to define
whether foot i is in contact with the ground and can therefore
generate contact forces or not.

The robot dynamics governed by (3) can be expressed as
the continuous-time state-space model:

ṗc
v̇c
8̇

Cω̇

=


vc
1/m

∑4

i=1
δifi + g

E′−1(8)Cω
−CI−1c (Cω × CIcCω)+

∑4
i=1 δiCI

−1
c Cpcf,i × Cfi


(4)

where vc is the CoM velocity of the robot. The robot base
orientation is represented by the sequence of Z -Y -X Euler
angles 2 [41] 8 = (φ, θ, ψ) i.e., roll (φ), pitch (θ ) and
yaw (ψ), respectively. The relation between the Euler Angles
rates 8̇ and angular velocity Cω is well-known and discussed
in Appendix A for the sake of completeness. We define the
state and control vectors as x = (pc, vc, 8, Cω), and u =
(f1, . . . , f4). Equation (4) can be concisely written as:

ẋ(t) = g(x(t),u(t), a(t)), (5)

where a = (pf, δ) is a vector of parameters that includes the
feet positions pf and the contact status δ ∈ R4.
The rigid-body dynamics (5) are discretized using numer-

ical integration [42]–[45] to obtain the discrete-time model:

xk+1 = f (xk ,uk , ak) , (6)

which defines equality constraints (1c) imposed at every
stage k in MPC to ensure that the state trajectory satisfies the
system dynamics for the given control inputs.

One specific feature of legged robots is the need to ensure
that the values of the GRFs equal to zero for a swinging
leg. This is typically done by introducing complementarity
constraints [31], [46]. These constraints, however, pose sev-
eral difficulties in the solution of the optimization problem,
since the vast majority of the NLP algorithms cannot han-
dle them and tailored solvers are required. Ultimately, this
results in a significant increase in computation time. An alter-
native to complementarity constraints consists in providing
the sequence of contact status δ as input parameters in the
state space model (5). In this manner, a contact mode δi is
multiplied with the terms involving force fi in (4) and the
contribution of that force is nullified during the swing phase
of the corresponding leg i. Hence, there is no more need to

2Note that Euler angles can suffer from singularities that occur in certain
configurations [40]. Because in this work we do not consider motions that
involve such configurations, using Euler angles does not pose any issue.
A singularity-free implementation is out of the scope of this work and is
left for future research.

include complementarity constraints separately in (1) which
results in fewer constraints and, consequently, in a relatively
smaller NMPC formulation.

C. FRICTION CONE AND UNILATERAL CONSTRAINTS
Friction cone constraints are encoded with their square pyra-
mid approximation:

−µifz,i ≤ fx,i ≤ µifz,i (7a)

−µifz,i ≤ fy,i ≤ µifz,i (7b)

fz ≤ fz,i ≤ fz (7c)

where, fz and fz are upper and lower bounds on GRFs Z
component, respectively, and µi is the friction coefficient
of the contact surface. Choosing fz greater than or equal to
zero enforces unilateral constraints on the normal forces fz.
The friction cone and unilateral constraint are represented by
h (xk ,uk , ak) ≤ 0 in the NMPC formulation.

IV. LOCOMOTION-ENHANCING FEATURES
In this section we discuss the main distinctive features of our
approach, which we found relevant to improve locomotion
ability of our quadruped robot. These features are mobility,
force robustness and Zero Moment Point (ZMP) margin.

A. MOBILITY AND MOBILITY FACTOR
Terrain adaptability is vital when it comes to locomotion of
the legged robots. Adjusting the posture of the robot depend-
ing on the environment is important for safe locomotion.
A way to enable our NMPC to choose robot orientation adap-
tively to any terrain is to employ the concept ofmobility [47].
In order to rigorously discuss mobility in mathematical terms,
we first define it in words as the attitude of amanipulator (leg)
to arbitrarily change end-effector position/orientation [29].

In order to penalize low leg mobility in the cost function
(2c) we need to compute the reference value of hip-to-foot
distance Cprefhfk

. Our goal in this section is to define a con-
venient metric to represent mobility and compute Cprefhfk

cor-
responding to the maximum value of such a metric. Among
several ways to compute mobility [47], the velocity trans-
formation ratio [48] allows one to evaluate mobility in a
particular direction. However, the velocity transformation
ratio cannot be used in our setting because it requires prior
knowledge of the evolution of the relative foot position with
respect to CoM. In our case it is not available in advance
because it is an output of the NMPC.

As an alternative approach, we consider the volume of the
manipulability ellipsoid

(
v(JJ>)−1v = 1

)
[29] as a metric to

evaluate mobility. A change in the volume of the manipula-
bility ellipsoid with different leg configurations is visualized
in Fig. 4 (left). Inspecting Fig. 4 (top right), it can be seen that
themaximumvolumeV is in the vicinity of themost extended
leg configuration because the mobility becomes very big in
the X and Y direction, even if it is still very limited in the
Z direction. However, because it is desirable to achieve a
good mobility in all the directions of the leg configuration,
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FIGURE 4. Manipulability ellipsoid changing with leg configuration (left)
of the right front leg. Volume of the ellipsoid (top right) and Eccentricity
of the ellipsoid (bottom right).

a better metric is the one that also accounts for the isotropy of
the manipulability ellipsoid. A measure of the isotropy of an
ellipsoid can be expressed as the inverse of its eccentricity E .
Hence, a newmanipulability index that we callmobility factor
(8) can be defined in terms of both the eccentricity and the
volume of manipulability ellipsoid. Again from Fig. 4, it can
be visualized that to keep a good mobility (left plot) in all
directions, the volume (top right plot) should be maximized
while the eccentricity (bottom right plot) as small as possi-
ble. Defining a foot Jacobian J(q) ∈ R3×3 computed at a
particular joint configuration q, the volume V of a manipu-
lability ellipsoid is evaluated as a product of the eigenvalues
of
(
J(q)J(q)>

)−1 while the eccentricity is the ratio between
its maximum andminimum eigenvalue [47]. First, the volume
and eccentricity of manipulability ellipsoid are normalized by
their ranges V̄ and Ē . Then we define the mobility factor as:

mf = β
V

V̄
− γ

E

Ē
(8)

The minus sign in (8) represents conflicting contributions
of the V and E in the definition of the mobility factor
(i.e. the goal is to achieve high volume and low eccentricity).
Parameters β and γ are introduced to find a best trade-off
between volume and eccentricity while deciding a mobility
factor.

The mobility factor is a convex nonlinear function
mf : R3

→ R that can be numerically evaluated inside the
workspace of each leg. By selecting β = 1 and γ = 4, and
after conducting a numerical analysis for all the feet positions
in the workspace of a leg of the HyQ robot we found that
hip-to-foot distance Cphf = (0, 0,−0.55)m maximizes mf.
In Fig. 5 (left) we show a slice of the scalar function mf in
the X -Y plane for Cphf,z = −0.55m obtained for the Right-
Front (RF) leg. Instead, in Fig. 5 (right) we plot mf against
the change of foot position in the Z direction considering the
hip under the foot (X = 0, Y = 0) which clearly highlights
Cphf,z = −0.55m corresponding to the maximum value of
the mobility factor mf (i.e., around 0.41). We use the output

FIGURE 5. Slices of the mobility factor function for the RF leg: the left
figure plots it against the X -Y components keeping Z constant. The red
dot in the left plot represents the maxima. The right figure plots it against
the Z component for a constant X -Y foot position.

of this analysis as a reference for the hip-to-foot distance Cprefhf
in the mobility cost (2c) for all the legs.

In the mobility cost, we multiply δi to the term correspond-
ing to the ith leg. Thus, the mobility cost solely accounts for
stance legs because the robot can only use them to control its
base orientation. Since, including the mobility cost enables
NMPC to provide the optimal base orientation for a particular
locomotion that retainsmobility, there is no need to separately
specify tracking cost for roll and pitch in the NMPC. This
relieves a user from the burden of implementing a customized
heuristic (e.g., to align the robot base to the terrain), as was
necessary in, e.g., [3], [46], [49]. The relative tracking task
for the CoM Z position is no longer required either, because
maximizing the mobility in the Z direction automatically
takes care of keeping an average distance of hips from the
terrain to Cphf,z, consequently keeping the robot base at a
certain height.

Moreover, the yaw motion results by penalizing the mobil-
ity cost along theX -Y directions. This has the effect of driving
the hips of the robot base over the feet, naturally aligning the
base to the feet, similar to what was done in [50]. However,
a tracking cost on yaw was still necessary in the NMPC to
track the heading velocity ωusr

z commanded by the user and
to avoid oscillations.
Remark: The concept of mobility is model independent

hence, it can also be used with other models such as full body
dynamics in the MPC setting.

B. ZMP MARGIN
In legged locomotion, the robot is often operated close to
unstable configurations which require a controller to contin-
uously compensate for model inaccuracies and external dis-
turbances while maintaining locomotion stability. However,
a configuration in which the ZMP [51] is close to the bound-
ary of the support polygon [52] could cause instability even
with small perturbations due to the loss of control authority.

In our case, the reference generator computes references
for the GRFs by dividing the robot mass with the number
of legs as explained in Section V. Penalizing GRFs Z com-
ponent heavily in the tracking cost (2b) ensures that they
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stay close to the reference, consequently maintaining a higher
loading on the diagonally opposite leg to the swinging one,
and therefore maintaining some margin for the locomotion
stability. To evaluate the locomotion stability, we define the
ZMP margin which is computed as the minimum of the
distance of the ZMP from each support polygon edge, i.e.,

mc = min(d) (9)

where d is a vector of the distances of ZMP projection (on a
horizontal plane) from the support polygon edges.

C. FORCE ROBUSTNESS
Similar to the considerations on mobility, in order to effec-
tively compensate for disturbances acting on the system,
robustness in the GRFs is required. The closer the GRF is to
the friction cone boundary, the less lateral force is available
to compensate for perturbations. An approach penalizing
GRFs that are in the vicinity of the cone boundaries has
been proposed in [4], [36] inside the WBC. These WBC
based approaches instantaneously generate GRFs that are as
close as possible to the normals of the cones while yielding
the prescribed resultant wrench on the robot base. However,
WBC does not account for the future state of the robot and
hence, it leaves some room for the NMPC to compensate for
the contact normal estimation error and recover from external
disturbances. Introducing these margins on GRFs from the
cone boundaries is especially important in some scenarios,
such as the one reported in simulation in Section VIII-B2.
In this paper, we adopt a similar idea to [4], [36] and

introduce the additional cost term (2d) in the NMPC, which
penalizes the tangential components of GRFs in the contact
frame K (see Fig. 3) to obtain the resultant GRFs as close as
possible to the contact normals. The weight matrix P used
in this cost is defined in Table 2 (Section VIII). Note that
it is required to penalize the X -Y components higher than
Z component of GRFs in the contact frame to achieve this
behaviour.

V. REFERENCE GENERATOR
In our approach, the NMPC requires a reference trajectory of
the state and control input along with the model parameters
i.e., foot positions and contact status. For the very first run of
the NMPC, this reference trajectory also serves as an initial
guess. The references are generated for the length of control
intervals N , since the reference generator is called before
every iteration of the NMPC in order to obtain prompt adap-
tation to terrain changes and user set-point. Our reference
generator is based on heuristics and it takes as inputs:
• the user commanded longitudinal and lateral CoM
velocity Hvusrc ∈ R2 in the horizontal frameH,3

• user commanded heading velocity ωusr
z ∈ R,

• current pose of the robot (pc,8),
• current feet positions pf ∈ R12,
• heightmap of the terrain

3The horizontal frame is placed like the CoM frame but with the Z -axis
aligned with the gravity

The reference generator outputs:
• the references for the NMPC cost: states xref ∈
Rnx×(N+1), control uref ∈ Rnu×N ,

• parameters a of the model: sequence of the contact
status δ (∈ R4×N ) and sequence of the foot locations
pf (∈ R12×N ),

• normals of the terrain at the foothold locations, which
are provided as inputs to the NMPC for the cone
constraints.

First we compute the X -Y components of the total velocity
vrefc ∈ R3, which depend on both vusrc and the X -Y compo-
nents of the tangential velocity due to the heading velocity
ωusr
= (0, 0, ωusr

z ).

vrefc,(x,y) = vusrc + (ωusr
× prefc )(x,y) (10)

The X -Y CoM position prefc,(x,y) is obtained by integrat-
ing the vrefc,(x,y) (in the world frame) with the explicit Euler
scheme. The references for CoM Z , roll and pitch are set to 0
because we do not track them in the NMPC cost (2b). Instead,
the reference for the yaw ψ is obtained by integrating the
user defined yaw rate ψ̇usr with 8̇

usr
= E−1(8ref)ωusr (see

Appendix A for the transformation between angular velocity
and Euler rates). The reference for angular velocity, instead,
coincides with ωusr.
The references for GRFs uref are calculated by simply

dividing the total mass of the robot by the number of legs
in stance. Dividing the forces equally onto the legs is correct
only if the robot is static, but, in case of dynamic conditions,
it is a better approximation than passing no references to the
NMPC.
The sequence of contact status δ and of footholds are com-

puted by the gait scheduler and robocentric stepping strategy,
respectively. It is important to mention that the reference gen-
erator does not compute the swing trajectories and they are
obtained from the WBC interface discussed in Section VI-A.

1) GAIT SCHEDULER
The gait scheduler is logically decoupled from the reference
trajectory generation and determines if a leg is either in swing
or in stance (δi) at each time instance for the entire gait cycle
as shown in Fig. 6 (left).
The leg duty factor Di and offsets oi can be used to encode

different gaits such as crawl, trot and pace. The gait scheduler
implements a time parametrization s ∈ [0, 1] (stride phase)
which is normalized about the cycle time duration Tc such
that the leg duty factorDi and offsets oi are independent from
the cycle time. Each trigger l tri (red arrow in Fig. 6 (left))
corresponds to a new lift-off event. We can express the value
of δ for leg i as:

δi =

{
1, s < oi ∨ s > ((oi + (1− Di)) mod 1)
0, otherwise

(11)

Every time the reference generator is called, it extracts
N points from the gait schedule starting from an index
called gait counter. It keeps memory of the index of the
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FIGURE 6. Gait schedule for a walk. Offsets o = [0.05,0.3,0.55,0.8],
duty-factors Df = [0.85,0.85,0.85,0.85]. The red arrows represent the
trigger l tr

i for a swing leg i . Right part shows the fast-forwarding (top) or
re-winding (bottom) of the gait counter to recover synchronization
between actual (haptic) and planned touchdown.

gait schedule achieved by the previous call of the reference
generator. The synchronization between the first point of a
contact sequence δik computed by the reference generator
and the actual contact state of the robot avoids the reference
generator to compute a zero reference force while the leg is
in stance and vice-versa. In case of premature or delayed
touchdown events, the synchronization is lost and the gait
counter is shifted backwards or forward to re-conciliate the
planned touchdown with the actual touchdown as shown
in Fig. 6 (right). This is a crucial feature when dealing with
rough terrains.

2) ROBOCENTRIC STEPPING
The choice of foothold is a key element in locomotion, since
it deals with the kinematic limits of the robot. Inspired by [1],
we use an approach that continuously computes footholds
consistent with the current position of the robot. To compute
a foothold for a swinging leg i, we consider its hip position
hi instead of using the foot position at the moment of lift-off.
In this way a disturbance acting on the robot or a tracking
error occurred during a swing can be recovered in the fol-
lowing swing. For leg i, dropping the index to simplify the
notation and defining the lift-off trigger as l trk = δk ∧ δk+1,
the foot position is computed as:

pfk+1 =

{
ptdfk l trk = 1

pfk l trk = 0
(12)

Notice that at the lift-off condition l tr = 1 at instance k ,
pf is set equal to the touchdown point ptdf and it is kept con-
stant until the next lift-off event occurs. The X -Y component
of the touchdown point is given by:

ptdfk ,(x,y) = hk + αT d
sw(v

usr
c + (ωusr

× pbh)(x,y)) (13)

The second term in (13) represents the step length (red
arrow in Fig. 7) which is computed with respect to the
hip instead of the previous foot location. Parameter α is an
empirically chosen scaling factor. Parameter T d

sw is the default
swing duration computed starting from user-defined offsets o
and duty-factors Df. The distance between hip and center of

FIGURE 7. Representation of the robocentric stepping strategy and of the
Swing Frame, located at the lift-off point. The red arrow shows the
distance between the touchdown point ptd

f and the hip h. The blue vector
Lsw connects lift-off and touchdown point.

the base is denoted by pbh ∈ R3. A 2.5D heightmap of the
terrain is evaluated in correspondence of the touchdown point
ptdfk ,(x,y) to obtain p

td
fk ,z

that does not penetrate the terrain. If ptdf
is located near to an edge or leads to collisions (e.g., of the
foot or the shin) during the step cycle, this can be harmful
for the robot’s balance. To prevent this from happening,
the robot acquires a local heightmap in the vicinity of the
touchdown point ptdf and adjusts the foot landing location
using the Vision-based Foothold Adaptation (VFA) module
presented in [53].

VI. WHOLE-BODY CONTROLLER
In this section, we describe the WBC that tracks planned
trajectories xp and up provided by the NMPC. TheWBC first
computes feed-forwardWd

ff and feedbackW
d
fb wrenches from

the planned trajectories and then the sum of these wrenches
are mapped into GRFs through the QP optimization (17). The
WBC also maps the GRFs into the joint torques τ ∗. This joint
torque along with low-impedance feedback torque τ fb results
in the total torque τ d required by the low-level joint torque
control block. Refer to Fig. 2 for the block representation of
WBC inside our locomotion framework.

A. WBC INTERFACE
In our planning framework, the NMPC runs at re-planning
frequency of 25Hz whereas the WBC requires state and con-
trol inputs at 250Hz (we will call this the WBC frequency).
Hence, we introduce a WBC interface block that re-samples
state and control inputs at the WBC frequency. In particular,
in order to obtain the desired ud we use a zero-order hold
filter of up. The planned states xp from the NMPC, instead,
are re-sampled with a linear interpolation to obtain xd.4

Finally, the feed-forward wrench Wd
ff ∈ R6 is computed

from the desired GRFs ud as:

Wd
ff =

[∑4

i=1
udi

∑4

i=1
pdcf,i × udi

]>
(14)

4The rigorous approach is to use the model (3) to predict the evolution
of the system in the Ts time interval, considering the up coming from the
NMPC, but for the motions considered in this paper the result is very similar,
so a linear interpolation is a fair approximation.

145718 VOLUME 9, 2021



N. Rathod et al.: Model Predictive Control With Environment Adaptation for Legged Locomotion

B. FEEDBACK WRENCH
We use the approach of [36] to define desired feedback
wrench obtained from a Cartesian impedance and briefly
recall it next for completeness:

Wd
fb = K

[
pdc − pc

e(wR>b wRd)

]
+ D

[
vdc − vc
ωd
b − ωb

]
(15)

where wRb and wRd ∈ R3×3 are the rotation matrices
representing actual and desired orientation of the base with
respect to the inertial frame, respectively, e(·) : R3×3

→ R3

is a mapping from a rotation matrix to the associated rotation
vector.MatricesK andD are diagonal matrices containing the
proportional and derivative gains and they can be interpreted
as impedances.
Remark: At each re-planning instance of NMPC, the state

reference is computed from the current state of the robot x̂0.
Thus, at each re-planning instance the feedback term is
nullified.

C. PROJECTION OF THE GRFs
While the feedforward wrenches Wd

ff provided by MPC sat-
isfy the friction cone and unilateral constraints by construc-
tion, this guarantee is lost with the addition of the feedback
termWd

fb to the wrenches. Therefore, one needs to project the
total wrenchesWd

ff+W
d
fb onto the set of wrenches that satisfy

the constraints. The matrix representation[
δ1I . . . δ4I

δ1
[
pcf,1×

]
. . . δ4

[
pcf,4×

]]︸ ︷︷ ︸
A

 f1
...

f4


︸ ︷︷ ︸

f

=Wd
ff +Wd

fb︸ ︷︷ ︸
b

(16)

is derived from a simplified SRBD model [36] and allows
us to map the desired wrenches into GRFs. To compute the
desired GRFs fd we solve the following QP:

fd = argmin
f
‖ Af− b ‖2S + ‖ f− ud ‖2T (17a)

s.t. d ≤ Cf ≤ d (17b)

The term ‖ f − ud ‖2T in the cost (17) allows the tracking
of the desired forces ud received from the NMPC. Matrices
S ∈ S6+ and T ∈ S12+ are positive-definite weight matrices.
Inequality (17b) encodes the friction cone and unilateral con-
straints similar to (7) for which further details can be found
in [36]. It is important to note that gravity compensation is
already incorporated in the NMPC formulation through the
SRBD model.

D. MAPPING GRFs TO JOINT TORQUES
The GRFs fd must be mapped into joint torques τ ∗. We do so
by exploiting the joint dynamics:

τ ∗ = −J(q)>fd + h(q, q̇) (18)

where J(q) ∈ Rnu×n is the contact Jacobian and h(q, q̇) the
vector of gravity/Coriolis terms in the leg joint dynamics.
The number of joints is denoted by n. We neglect the joint

acceleration contribution, because it is very small with respect
to the other terms.

E. JOINT-SPACE PD
A 1 kHz Joint-Space PD is put in cascade with the WBC
before sending torques to the low-level controller. In this way,
we track the desired trajectories of the swinging legs and we
increase the robustness in case a foot loses contact with the
ground. The WBC interface provides the joint trajectories
qd and q̇d required by the Joint-Space PD. To compute the
joint trajectories, inverse kinematics is required which in
turn needs the swing trajectory pswf . We define the swing
frame S [50] (Fig. 7), whose X -axis is aligned with the
vector that links lift-off and touchdown point (Lsw), Y -axis
is perpendicular to the X -axis of the swing frame and to the
Z -axis of the world frame. Finally the Z -axis is such that S
is a counter-clockwise coordinate system. The origin of the
swing frame S coincides with the lift-off point. In this way
the swing trajectory lies on the X -Z plane and we shape it as
a semi-ellipse with Lsw and Hsw as lengths of the axes:

Spswf =


Lsw

2
(1− cos(π fswtsw))

0.0
Hswsin(π fswtsw)

 (19)

where tsw is the time elapsed from the beginning of a swing
and fs = 1/T d

sw is the swing frequency. We map Spswf and
its derivative in the inertial frame W to obtain pswf and ṗswf ,
respectively. Finally, after evaluating the relative foot position
Cpcf and velocity C ṗcf we can obtain qd and q̇d via inverse
kinematics.

VII. REAL-TIME ITERATION FOR NMPC
One of the main drawbacks of NMPC is its computational
burden, thus efficient tailored algorithms are necessary in
order to achieve fast sampling rates for complex systems with
fast dynamics. While many approaches have been developed
for optimal control, a complete discussion about all possible
approaches is beyond the scope of this paper. We focus on
direct multiple shooting methods derived from Sequential
Quadratic Programming (SQP) that have been specifically
developed for real-time NMPC [34].

In multiple shooting methods both state x and control input
u are decision variables unlike in single shooting where the
decision vector only includes the control input. We ought
to stress that this does not increase the computational com-
plexity with respect to single shooting (where computations
are moved from linear algebra to the evaluation of deriva-
tives). Furthermore, multiple-shooting allows one to provide
an initial guess also for the state trajectory, which is typically
beneficial for unstable systems in an NMPC context [34].

SQP is a popular algorithm which solves an NLP by iter-
atively solving local quadratic approximations (QPs) of the
problem [35]. At each SQP iteration, the solution from the
previous step is recycled to define an initial guess (xLk ,u

L
k ),
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which is then used to construct a QP approximation of the
NLP (1), given by

min
1x,1u

N−1∑
k=0

1
2

[
1xk
1uk

]>
Hk

[
1xk
1uk

]
+ J>k

[
1xk
1uk

]
(20a)

s.t. 1x0 = x̂0 − xL0 , (20b)

1xk+1 = Ak1xk + Bk1uk + rk , (20c)

Ck1xk + Dk1uk + hk ≥ 0, (20d)

where, 1xk = xk − xLk ,1uk = uk − uLk , x̂0 is the current
system state, and

Ak =
∂f (x,u, ak )

∂x

∣∣∣∣
xLk ,u

L
k

, Bk =
∂f (x,u, ak )

∂u

∣∣∣∣
xLk ,u

L
k

,

Ck =
∂h(x,u, ak )

∂x

∣∣∣∣
xLk ,u

L
k

, Dk =
∂h(x,u, ak )

∂u

∣∣∣∣
xLk ,u

L
k

,

rk = g
(
xLk ,u

L
k , ak

)
− xLk+1, hk = h

(
xLk ,u

L
k , ak

)
Jk = Wk

[
xLk − xrefk
uLk − urefk

]
(21)

Matrix Hk is the diagonal blocks of a suitable approxi-
mation of the Lagrangian Hessian. Since our problem relies
on a least-squares cost, we adopt the popular Gauss-Newton
Hessian approximation [35] that gives Hk =Wk .

While in SQP one solves several QPs until convergence is
reached, the RTI scheme consists in solving a single QP per
sampling time. This is motivated by the observation that in
NMPC two subsequent problems have very similar solutions.
Therefore, by reusing the solution of the previous NMPC
problem, one obtains a very good initial guess for the next
problem, which essentially only needs to correct for external
perturbations and model mismatch. For all details on the RTI
scheme, we refer to [25], [35] and references therein.We limit
ourselves to observe that, since (xLk ,u

L
k ) is known before the

next state measurement is available, one can already evaluate
the functions and their derivatives (21) before the initial state
x̂0 is available. Consequently, the QP can be constructed and
prepared beforehand; note that this also includes the first
factorization of the QP Hessian. Once x̂0 is available, one
only has to finish solving the QP. Therefore, while the overall
sampling time must still be long enough to prepare the next
QP, the latency between the time at which x̂0 is available
and the time at which the control input can be applied to the
system is very small.

Note that in the RTI scheme proposed above, the func-
tions and their derivatives (21) are evaluated along a guess
obtained from the previous solution, rather than along the
reference trajectory. Another important aspect to highlight is
the fact that there exist several approaches to compute (21).
One choice consists of first linearizing the continuous-time
system dynamics and then using the matrix exponential to
obtain a discrete-time linear system. This approach presents
some advantages, but can be computationally demanding.
For the time-varying and infeasible references, however,

it is preferred to first discretize and then linearize [35].
In this work we deal with time-varying and infeasible ref-
erences, hence we opt for first discretize and then linearize
approach. An advantage of this apporach is that after numer-
ically approximating the discrete-time dynamics, the lin-
earization can be obtained at a desired accuracy.

A very popular way to obtain discret-time dynamics is
with the explicit Euler integrator, which is computationally
inexpensive, but can be inaccurate and unstable. Therefore,
it is usually more efficient to resort to higher-order integra-
tion schemes, such as, e.g., the popular Runge-Kutta meth-
ods. Finally, we should further stress that there also exist
implicit integration schemes, which require more compu-
tations per step, but they are typically much more stable
and accurate than explicit schemes for some classes of sys-
tems. Unfortunately, the selection of the least computation-
ally demanding integrator which delivers sufficient accu-
racy depends on the problem setting and typically requires
some trial-and error approach, which can be educated using
some guidelines based on the theoretical properties of each
integrator [42]–[45], [54].

In this work, we relied on the RTI implementation provided
by acados [26], which consists of tailored efficient imple-
mentations of QP solvers, numerical integration schemes, and
all other components of the RTI scheme.

VIII. RESULTS
In this section we discuss the implementation details and
results obtained from the simulations and experiments with
the NMPC scheme proposed in Section III.

A. IMPLEMENTATION DETAILS
To check the efficacy of our RTI based NMPC algorithmwith
the proposed features mentioned in Section IV, we performed
several simulations and experiments in challenging scenarios.
The simulation and experiments were performed on the HyQ
robot of mass m = 87 kg. The CoM is computed considering
themass of the individual link of the robot and the actual posi-
tion of the links’ CoM. The position of the links’ CoM in their
local frame is obtained from their CADmodels. The feedback
gains used in the WBC are K = diag(1500, 1500, 1500,
100, 100, 100) and D = diag(1000, 1000, 1000, 50, 50, 50).
We chose the weights S = diag(5, 5, 10, 10, 10, 10) and
T = diag(1000, . . . , 1000) for the QP (17). The parameters
and weights used by the NMPC are reported in Table 1 and 2,
respectively. In all of our simulations and experiments, we do
not set any weights on the CoM position (pc), roll (φ) and
pitch (θ) tasks because we wanted the NMPC to sort out these
quantities autonomously.

1) DISCRETIZATION
For the discretization of the dynamic constraints, we mainly
investigated two integration schemes, i.e, a single step of
the explicit Euler of order 1 and implicit midpoint method
of order 2 due to their low computational complexity that
favors our real-time implementation needs. We chose the
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TABLE 1. NMPC parameters.

TABLE 2. Weights used in the NMPC.

implicit midpoint method of order 2 because of its stability
and accuracy properties. The sampling time Ts = 40ms was
chosen and it was sufficient to conduct NMPC computation
online along with the other necessary computations for the
re-planning.

2) NMPC SOFTWARE
We use the acados software package [26] to implement the
RTI scheme described in Section VII. Since acados comes
with a Python interface allowing rapid prototyping, we first
tuned the algorithm in simulation and then used the generated
C-code to perform real experiments.We employ theQP solver
High-Performance Interior Point Method (HPIPM) [55],
which exploits the sparsity structure of the MPC QP sub-
problem (20), and supports inequality constraints.

The computation time required by the NMPC was in the
range of 5-7ms with the prediction horizon of 2 s and control
intervals N equal to 50 on the on-board computer (a Quad
Core Intel Pentium PC104 @ 1GHz) of HyQ for all the
experiments. This computation time corresponds to the feed-
back phase of the RTI scheme where the QP (20) is solved
after receiving the current state of the robot. The preparation
phase of the RTI takes about 2-3ms which is a fraction of
the sampling time we chose. Refer to Section VII for more
details on these phases of the RTI scheme. Even though the
computation time of NMPC ismostly consistent, we observed

some outliers. Hence we opted for a conservative approach
to run the NMPC at 25Hz to guarantee that the computation
time stays always less than 40ms. Besides the computation
time of the NMPC, we also account for the time required
by other blocks such as reference generator so that the total
computation time does not exceed 40ms.

3) INTEGRATION WITH THE LOCOMOTION FRAMEWORK
The NMPC is integrated in a ROS node that publishes xp and
up at a frequency of 25 Hz. The on-board computer along
with our locomotion framework (WBC Interface, WBC, etc.,
illustrated in Fig. 2) runs a real-time node that subscribes
to the topic of the NMPC ROS node. ROS is not a real-
time operating system, so it can introduce quite a significant
and unpredictable communication delay if the NMPC is run
on an external (e.g. more powerful) computer. These delays
are difficult to compensate for and they can cause a loss
of synchronization between the NMPC ROS node and the
WBC interface. Therefore, we decided to launch the NMPC
node natively on the on-board computer to avoid communi-
cation delays between two different computers. Even though
we chose not to use a more powerful dedicated off-board
computer for the NMPC ROS node, we obtained a better
performance in the overall implementation by avoiding the
communication delays of ROS.

B. SIMULATIONS
We show our NMPC planner in action on challenging terrain
starting with simulations. The main simulations are pallet
crossing, walking over unstructured rough terrain and walk
into a V-shaped Chimney.

1) PALLET CROSSING
In this simulation, HyQ traverses pallets of different heights,
placed at varying distances form each other. This simula-
tion highlights the importance of including mobility in the
NMPC formulation (2c). In particular, the simulation sce-
nario includes a set of pallets, each one of 1m length, with
variable heights between 0.13 and 0.17m and placed at
unequal gap lengths ranging from 0.2 and 0.7m. We per-
formed multiple trials commanding the robot to move for-
ward at different velocities i.e., 0.05m/s and 0.1m/s to
show the repeatability of our approach. To avoid stepping
on undesired locations such as pallet edges and to prevent
foot or shin collisions, the nominal footholds are adjusted
by using the VFA (refer to Section V-2). Fig. 9 shows the
results of five different trials for each of the commanded
velocities. The top plot shows the pitch angle θ of the robot as
it traverses the scenario. Since the robot is only commanded
to move along its X direction with a constant forward velocity
and the foot locations are provided as known quantities to
the NMPC, the adjustment in pitch is the result of minimiz-
ing the deviation from the hip-to-foot distance configuration
corresponding to high mobility for all four legs. Without
this feature, the robot would maintain a constant horizontal
orientation (see Fig. 8) eventually reaching low mobility in
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FIGURE 8. Comparison of the robot pitch θ in simulation with and
without mobility cost in the NMPC. The red and green lines represent the
planned pitch values delivered by the NMPC. The blue and black dashed
lines are actual pitch of the robot. Without mobility cost, the robot
maintains a horizontal orientation, whereas the robot pitches to improve
leg mobility when it is included.

FIGURE 9. Simulation of pallet crossing scenario for five different trials
commanding the robot to cross at 0.1 m/s (blue) and 0.05 m/s (red). The
top graph shows the pitch angle and the dashed vertical lines indicate the
edges of the pallets for that specific location in the plot. The bottom
graph shows the CoM Z position for all the trials and the feet trajectories
for one of the trials performed at 0.1 m/s. The color of swings are related
to the different legs.

some legs as shown in the attached video5 for a single pallet
simulation. We have also showed in the accompanying video
the simulation of a walk on randomly generated rough terrain
(using terrain generation tool by [56]) with the forward veloc-
ity of 0.3m/s further stressing the advantages ofmobility cost
mentioned earlier.

2) WALK INTO A V-SHAPED CHIMNEY
In this simulation, we show HyQ walking at 0.03m/s com-
manded velocity in the X direction into a V-shaped chimney
with friction coefficient µ = 0.7 and walls inclined at 35◦ to
the ground. This simulation exploits the cone constraints and
force robustness cost defined inside the NMPC formulation
that is vital for the success of this task. The robot receives an
online update of the map of the environment through an on-
board camera to get the information about the normals at the
location of the contact. These normals are used to formulate
the force robustness cost (2d) in the contact frame K. With
this cost, the NMPC provides optimal GRFs to stay close to
the normals of the friction cones at the contacts.

5https://youtu.be/r0-KIiw0eWM

As shown in the accompanying video, without the cone
constraints the robot slips while climbing the chimney and
ultimately falls. When the force robustness cost is enabled,
the forces are regularized to stay in the middle of the cones,
thanks to the robustness feature described in Section IV-C.
In this case the robot walks successfully into the chimney.
In Fig. 10, it can be seen that the longitudinal and lateral com-
ponents of the GRF at the Left-Front (LF) foot stay within the
bound µfz (in red) imposed by the cone constraints. More-
over, Fig. 11 plots the normal versus the tangential force of the
GRF together with the cone bound µfz (red line). The picture
shows that the GRF stays well within the bound without any
violation. Therefore, including the force regularization term
enables the NMPC to account for the estimation error in the
orientation of contact normals and increase robustness to the
external disturbances.

FIGURE 10. Walk into a V-shaped chimney simulation: GRFs of LF leg for
a single gait cycle with cone constraints and regularization cost. Both the
longitudinal fx and lateral fy lie conservatively within the bound µfz
imposed by cone constraints.

FIGURE 11. Walk into a V-shaped chimney simulation: Normal force fz
versus tangential force

√
f 2
x + f 2

y of the LF leg for a single gait cycle
expressed in the contact frame. The red line is the cone bound µfz.

Apart from the simulation mentioned above, we also have
added in the attached video, the simulations regarding the
ZMPmargin (refer to Section IV-B) and the importance of the
re-planning at a higher rate. For the ZMP margin simulation,
the robot is pushed with 200N of lateral force for 1 s both in
case of sufficient (higher weight on GRFs Z ) and no (lower
weight on GRFs Z ) ZMP margin. The ZMP margin plots for
this simulation can be seen in Fig. 12 where the ZMP margin
is improved in case of the red line compared to the blue
one because the GRFs Z components are penalized relatively
more (100 times) for the red line. Because of the improved
margin the robot walks stably, whereas it falls while walking
when there is no margin.
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FIGURE 12. Plot of the ZMP margin mc used to measure locomotion
stability. The robot is pushed immediately after 2 s with lateral force of
200 N while walking on a flat terrain at 0.1 m/s CoM X velocity. The
discontinuities are due to the switching between 3/4 stance legs in a
crawl gait.

In the second simulation, the robot is commanded with
a constant CoM X velocity and heading velocity simulta-
neously. In case of re-planning at lower rate of 0.8Hz, the
robot becomes unstable and falls due to increase in the
model uncertainties and tracking errors. We would like to
stress that when the re-planning is done at a lower frequency
than 25Hz, the robot is in open-loop for the time interval
between two consecutive re-planning instances, hence, it is no
more NMPC but an online open-loop trajectory optimization.
On the other hand, at a higher re-planning frequency of 25Hz
the robot walks successfully because the NMPC compensates
for the model uncertainties and tracking errors.

C. EXPERIMENTS
We performed three different experiments to demonstrate
the real-time implementation of our NMPC running on the
on-board computer of the robot as follows.

1) OMNI-DIRECTIONAL WALK
With this experiment, we show the omni-directional walk
performed by HyQ with the NMPC on a flat terrain. This
experiment validates that the NMPC computes feasible tra-
jectories after receiving different velocity commands from
the user while walking. In this experiment, the robot is com-
manded with a longitudinal velocity Hvusrc,x by the user to
walk forward/backward and then a lateral velocity Hvusrc,y.
Finally, a heading velocity ωusr

z is commanded to turn in
the left/right direction. Fig. 13 shows the CoM X -Y position
and yaw angle of the robot base and it can be noticed that
the actual values track very closely the planned trajectories
provided by the NMPC. Fig. 14 depicts the deviation of the
actual velocities from the reference values while following
the planned trajectories form NMPC. It can be seen in Fig. 15
that the GRFs generated by the WBC are compliant with
the planned values up and again the actual values of GRFs
track closely the planned values. From these plots, it can be
observed that the continuous re-planning with NMPC plays
an important role to achieve good tracking of the planned
trajectory.

FIGURE 13. CoM X-Y position and yaw ψ in omni-directional walk
experiment. The blue, dotted red and dashed green line represent the
actual, planned and reference values, respectively.

FIGURE 14. The longitudinal ṗc,x, lateral ṗc,y and angular ωz velocity of
the robot in omni-directional walk experiment. The blue, dotted red and
the green line represent the actual, planned and reference values,
respectively.

2) TRAVERSING A STATIC PALLET
The purpose of this experiment is to demonstrate that the
mobility cost (2c) incorporated in the NMPC formulation
provides the necessary body pitch for the robot to traverse
over a static pallet while maintaining good leg mobility. The
pallet used in this experiment is 0.13m in height and 0.8m
in length. Fig. 16 shows that the robot pitches up while
climbing up the pallet and pitches down consequently while
climbing down from the pallet. As shown in the attached
video in the simulation, the NMPC maintains the horizontal
base orientation when the mobility cost is deactivated. This
causes a reduced hip-to-foot distance while stepping up/down
on the pallet ultimately resulting in low leg mobility. When
mobility cost is activated, it directs the NMPC solution to
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FIGURE 15. GRFs from one gait cycle in the omni-directional walk
experiment (We show only one cycle for better visibility of the data). The
green, dotted red and dashed blue line represent the output from WBC
i.e., f d

z,i , planned and reference values, respectively.

FIGURE 16. Planned (red) and Actual (dashed blue) pitch of the robot
base while traversing a static pallet in the experiment at a commanded
CoM X velocity of 0.03 m/s.

achieve the necessary pitch that allows to maintain the hip-to-
foot distance at the reference value and hence the leg mobility
is improved. Moreover, the VFA provides the corrected foot
position (i.e., to avoid shin or feet collisions with the edges of
the pallet) to the NMPC and this further enhances the overall
locomotion.

3) TRAVERSING A REPOSITIONED PALLET
In this experiment we test our NMPC to plan the robot motion
in real-time by adapting the changes in the environment with
the help of VFA. As it can be seen from the attached video,
when the pallet (0.13m in height and 0.8m in length) is
pushed in front of HyQ while walking, the heightmap detects
the pallet and the VFA provides updated foot locations to the
NMPC. The NMPC after receiving these updated foot loca-
tions delivers a solution by pitching up the robot base in order
to adapt to the change in the environment while maintaining
the mobility. Even though the mobility cost is defined for the
stance legs, it is interesting to notice that the NMPC decides
to adjust the base pitch while swinging the RF leg onto the
pallet (see Fig. 17) by forecasting the change in hip-to-foot

FIGURE 17. Robot base pitch achieved during the swing of RF leg while
traversing a repositioned pallet in the experiment a commanded CoM X
velocity of 0.05 m/s. The red and dashed blue line are planned and actual
values.

distance at the touchdown. This experiment highlights the
advantage of the predictive control over the traditional control
apporaches for its ability to incorporate the knowledge of the
future states. It also validates the effectiveness of our mobility
cost in the NMPC coupled with the VFA to adapt to the
changes in the locomotion environment.

IX. CONCLUSION
In this work, we have demonstrated in experiments a real-
time NMPC which leverages optimization of leg mobil-
ity to achieve terrain adaptation. The contact sequence
parameters embedded inside the SRBD model allows us to
encode the complementarity constraints directly, and without
a need to enforce these constraints separately in the NMPC.
We exploited the RTI scheme for our NMPC that enable us
to close the loop at 25Hz on the NMPC with a prediction
horizon of 2 s. Closing the loop on NMPC at 25Hz allows us
to compensate for the state drifts due to model uncertainties
and tracking errors, and also adapt to the changes in the
environment while following user velocity commands both
in the simulations and experiments.

In our NMPC, the mobility cost penalizes the hip-to-foot
distance from a reference value corresponding to a high
mobility factor and hence it directs the NMPC to compute
essential robot orientation to maintain a high mobility while
respecting the kinematic limits. This is evident from the
pallet experiments where we also included VFA to correct
undesired foot positions defined by the heuristics and avoid
possible foot and shin collision. Accounting for the ZMP
margin in our NMPC improved the locomotion stability of the
robot in all of our experiments and simulation by keeping a
sufficiently large ZMP margin from support polygon bound-
aries. Incorporating a force robustness term in the NMPC
ensures that the GRFs stay close to the contact normals and
hence, it enables the robot to cope with the estimation error
of the orientation of the contact normals.

With our NMPC, we have performed successful dynamic
locomotion in simulation as well as in the experiments
on different rough terrains. In our future work we would
like to extend our NMPC to optimize the step timing and
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foot locations. Additionally, the reference generator does not
provide references by rejecting the external disturbances act-
ing on the robot state, hence the robot complies transparently
with these disturbances. Therefore, in the future we plan to
empower the reference generator to reject disturbances to
bring back the robot from a perturbed state to a state coherent
with the user commands.

APPENDIX A
ANGULAR VELOCITY
We employ the Z -Y -X convention [41] for the Euler angles
sequence 8 = (φ, θ, ψ)> to represent the orientation of the
robot base where, φ, θ and ψ are the roll, pitch and yaw,
respectively. The angular velocity in inertial and CoM frame
is related to the Euler angle rates with the following relations:

ω = E(8) 8̇ (22)

Cω = E′(8) 8̇ (23)

E(8) and E′(8) are the Euler angle rates matrix and conju-
gate Euler angle rates matrix respectively given by,

E(8) =

cos(θ ) cos(ψ) − sin(ψ) 0
cos(θ ) sin(ψ) cos(ψ) 0
− sin(θ ) 0 1

 (24)

E′(8) =

1 0 − sin(θ )
0 cos(φ) cos(θ) sin(φ)
0 − sin(φ) cos(θ ) cos(φ)

 (25)

Remark: E depends on pitch and yaw, whereas E′ on roll
and pitch. Thus, the Euler angle rates 8̇ is

8̇ = E−1(8)ω (26)

8̇ = E′−1(8) Cω (27)
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