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Abstract—We present an online semantic object mapping sys-
tem for a quadruped robot operating in real indoor environments,
turning sensor detections into named objects in a global map.
During a run, the mapper integrates range geometry with camera
detections, merges co-located detections within a frame, and
associates repeated detections into persistent object instances
across frames. Objects remain in the map when they are out
of view, and repeated sightings update the same instance rather
than creating duplicates. The output is a compact object layer
that can be queried (class, pose, and confidence), is integrated
with the occupancy map and readable by a planner. In on-robot
tests, the layer remained stable across viewpoint changes.

Index Terms—mapping, quadruped robots, semantic mapping,
object detection

I. INTRODUCTION

Accurate mapping is fundamental for autonomous naviga-
tion. In complex environments featuring uneven terrain, low
friction, gaps or stairs, wheeled robots struggle, while bipedal
robots are usually unstable and slow. Quadrupeds, however,
offer advantages in mobility and stability in such scenarios [1].

In these settings, navigation goals are often tied to objects
rather than geometric locations, e.g., “find the door”, “go to
the toolbox”, or “stop by the charger.” A purely geometric map
could be insufficient in such scenarios. Object-level semantics
can help a planner decide where to go [4].

Earlier work showed that maps can combine geometry with
object and location labels, giving planners a representation
they can query directly for tasks like “go to the kitchen”
[2], [3]. Learning-based methods train a policy that main-
tains a category-level semantic map from RGB-D (via both
segmentation and detection) and conditioned on the goal
class, scores frontiers or regions to select the next waypoint
[4]. Multi-modal mapping fuses RGB-D images with LiDAR
data to reduce depth measurement errors and can improve
3D placement. [5]. On quadrupeds used in search-and-rescue
scenarios, semantic layers focus on people and structural cues
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Fig. 1: Spot by Boston Dynamics with onboard payload: 1. Intel RealSense
T265 Camera, 2. Intel RealSense D435 Camera, 3. 2D LiDAR, 4. Intel NUC
11 i7-1165G7, and 5. A lithium-ion battery to power the NUC.

such as cracks, stairs, and doors, confirming the value of task-
specific object information [6]. Recent open-vocabulary and
vision—language methods add flexible labels and frontier scor-
ing, but they often require comparatively heavy computation
and dense 3D updates [7]-[9]. In parallel, many practical Spot
deployments such as industrial sites, tunnels, and labs, still rely
on prior maps for stable localization in confined or hazardous
spaces, which underlines the need for reliable, lightweight
mapping substrates on real robots [1], [10].

In this work, we present a lightweight semantic mapping
method for a quadruped robot. The system fuses RGB-D
camera object detections with LiDAR scans and T265 odom-
etry to project the objects into a global map, merging nearby
duplicates per frame, and associating repeated observations
over time. Fig. 2 summarizes the methodology. We avoid
heavy 3D fusion and large vision—language scoring loops that
raise latency and power draw [7]-[9], being consistent with
onboard computational constraints [1], [10]. The platform is
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Fig. 2: Overview of the proposed methodology. A 2D occupancy grid map is built using 2D LiDAR scans and odometry obtained from the T265 camera.
Object detections are obtained from RGB images, and depth is used to estimate 3D positions. The semantic layer places detected objects on the map, merges

nearby ones, and keeps them over time.

a Boston Dynamics Spot equipped with a sensor payload and
an onboard NUC (Fig. 1).

II. METHODS
A. Mapping (SLAM Toolbox with T265 odom and 2D LiDAR)

We build a 2D occupancy map online with the SLAM
Toolbox [11]. A 2D LiDAR provides range geometry, while
the Intel RealSense T265 provides visual-inertial odometry.
The static transformations between the robot body frame, the
LiDAR, and the T265 are fixed (calibrated once). During
operation, the SLAM Toolbox uses visual odometry computed
by the T265 tracking camera as a motion prior and refines
it with scan matching and pose-graph loop closure, limiting
drift and maintaining a globally consistent estimate. This
occupancy map provides the geometric base for the semantic
layer described next.

B. Visualization and Detection (D435 + YOLOvI]I)

The Intel RealSense D435 provides synchronized RGB-D
input for detection and projection: color images, depth aligned
to the color stream, and the associated camera intrinsics [12].
We also use a static transform between the robot body frame
and the camera frame.

For object detection, we use YOLOvI11 [13]. Each color
frame is preprocessed to the model input; outputs are class
labels, scores, and 2D bounding boxes in the camera frame
after non-maximum suppression. We publish a lightweight
detection topic and an RViz overlay. Depth fusion and map
anchoring are handled by the semantic layer in the next
subsection.

C. Semantic object layer: association and memory

We transform each 3D detection into the map. We set the
height (z-axis) to O and keep only the yaw rotation (roll and
pitch are set to zero) to have a 2D map. We drop low-score
detections by using per-class thresholds. Using Euclidean
distance on the map, within the same frame, we remove near-
duplicates by keeping only the highest-score detection for
a class when two appear very close on the map. The key
parameters used in our runs are summarized in Table L.

TABLE I: Core settings for association and memory.

Per-class confidence cutoff 0.65
Same-frame merge radius [m] 0.20
Reuse radius in map [m] 0.80
Promotion gate (hits / s / mean) 10/2.0/0.50

We have two memories: a short-term buffer of recent
observations and a long-term list of confirmed objects. For
each detection, we first check the long-term list with a nearest-
neighbor search (NNS) in the 2D map. If a same-class object
is nearby, we recognize it as seen again, increase its detection
count by one, and leave its stored pose unchanged. Otherwise,
we compare it with the short-term buffer: if no same class is
within the radius, we start a new short-term record; if one is
close, we update it with the new measurement. A new object
is added to the long-term list only after the same class is re-
observed several times within a short interval at approximately
the same position and with sufficient confidence. Finally, we
publish the current set of confirmed objects in the map frame.
Fig. 3 summarizes the association and memory logic.
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Fig. 3: Association pipeline for confirmed objects.
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Fig. 4: Setup and output. The semantic layer tracked only person and
chair.

III. RESULTS

We mounted a D435 RGB-D, a T265, and a 2D LiDAR on
the quadruped and ran the SLAM Toolbox with our semantic
mapper inside a ROS 2 container. An operator drove the
robot with a joystick through a lab with two people and two
chairs, as shown in Fig. 4(b). As the robot moved, the SLAM
system built a 2D occupancy map, while the semantic mapper
projected detections into the map in real time'. Using the
depth images, we computed a 3D position for each detection
and transformed it into the global map via the calibrated
camera—to—body transform and the SLAM-estimated robot
pose. In RViz, blue cubes, shown in Fig. 4(a), mark confirmed
objects. Each one is labeled with its class and hit count.
Repeated sightings update the same instance, and per-frame
near-duplicate boxes are suppressed to the highest-score to
keep the map uncluttered. Fig. 5 shows the asynchronous
frame rates of the visualization topics. The semantic layer
maintains stable instances despite these mismatched stream
rates.

IV. CONCLUSION

We built an online, object-level semantic map for a
quadruped. Geometry comes from the SLAM Toolbox (2D
occupancy with T265 and a 2D LiDAR) and detections from
a D435 with YOLO are anchored in the map frame as
persistent instances. Simple map-frame association plus short-
and long-term memory keeps objects stable through viewpoint
changes while avoiding per-frame duplicates. An autonomous
navigation system that uses this layer is left for future work.

The limitation we observed is depth misalignment: D435
depth is not consistent with the LiDAR scan plane, which
introduces range/pose bias when placing objects in the map.
Other limitations are reliance on detector centers, purely
geometric association (no appearance cues), and evaluation
limited to indoor runs.
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Fig. 5: (A) Final FPS. (B) Camera RGB and aligned depth, average rate vs.
cumulative messages (window). (C) YOLO debug-image rate. (D) Semantic
object-map rate. Note: the YOLO stream publishes only when detections exist.
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