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Abstract

Legged robots are advancing towards being fully autonomous as can be seen
by the recent developments in academia and industry. To accomplish break-
throughs in dynamic whole-body locomotion, and to be robust while traversing
unexplored complex environments, legged robots have to be terrain aware.

Terrain-Aware Locomotion (TAL) implies that the robot can perceive the
terrain with its sensors, and can take decisions based on this information. The
decisions can either be in planning, control, or in state estimation, and the
terrain may vary in geometry or in its physical properties. TAL can be cat-
egorized into Proprioceptive Terrain-Aware Locomotion (PTAL), which relies
on the internal robot measurements to negotiate the terrain, and Exteroceptive
Terrain-Aware Locomotion (ETAL) that relies on the robot’s vision to perceive
the terrain. This thesis presents TAL strategies both from a proprioceptive and
an exteroceptive perspective. The strategies are implemented at the level of
locomotion planning, control, and state estimation, and are using optimization
and learning techniques.

The first part of this thesis focuses on PTAL strategies that help the robot
adapt to the terrain geometry and properties. At the Whole-Body Control
(WBC) level, achieving dynamic TAL requires reasoning about the robot dy-
namics, actuation and kinematic limits as well as the terrain interaction. For
that, we introduce a Passive Whole-Body Control (p WBC) framework that al-
lows the robot to stabilize and walk over challenging terrain while taking into
account the terrain geometry (inclination) and friction properties. The pWBC
relies on rigid contact assumptions which makes it suitable only for stiff ter-
rain. As a consequence, we introduce Soft Terrain Adaptation aNd Compliance
Estimation (STANCE) which is a soft terrain adaptation algorithm that general-
izes beyond rigid terrain. STANCE consists of a Compliant Contact Consistent
Whole-Body Control (c*WBC) that adapts the locomotion strategies based on
the terrain impedance, and an online Terrain Compliance Estimator (TCE) that
senses and learns the terrain impedance properties to provide it to the c3WBC.



Additionally, we demonstrate the effects of terrains with different impedances
on state estimation for legged robots.

The second part of the thesis focuses on ETAL strategies that makes the
robot aware of the terrain geometry using visual (exteroceptive) information.
To do so, we present Vision-Based Terrain-Aware Locomotion (ViTAL) which is
a locomotion planning strategy. ViTAL consists of a Vision-Based Pose Adap-
tation (VPA) algorithm to plan the robot’s body pose, and a Vision-Based
Foothold Adaptation (VFA) algorithm to select the robot’s footholds. The VFA
is an extension to the state of the art in foothold selection planning strate-
gies. Most importantly, the VPA algorithm introduces a different paradigm for
vision-based pose adaptation. ViTAL relies on a set of robot skills that charac-
terizes the capabilities of the robot and its legs. These skills are then learned
via self-supervised learning using Convolutional Neural Networks (CNNs). The
skills include (but are not limited to) the robot’s ability to assess the terrain’s
geometry, avoid leg collisions, and to avoid reaching kinematic limits. As a
result, we contribute with an online vision-based locomotion planning strategy
that selects the footholds based on the robot capabilities, and the robot pose
that maximizes the chances of the robot succeeding in reaching these footholds.

Our strategies are based on optimization and learning methods, and are ex-
tensively validated on the quadruped robots Hy() and HyQReal in simulation
and experiment. We show that with the help of these strategies, we can push dy-
namic legged robots one step closer towards being fully autonomous and terrain
aware.
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Preface

e This doctoral thesis is building upon decades of research and development
in robotics, dynamics, controls, and machine learning. We expect that
the reader has a basic knowledge about legged robotics before reading this
thesis.

e This doctoral thesis is styled as a cumulative thesis. The main contents
are based on publications from peer-reviewed journals, with an exception
of one chapter that contains yet unpublished material. Chapter 1 gives a
brief introduction to the problem and the state of the art, and it lists the
contributions and the outline of the thesis. Chapters 2, 3, and 4 include
the peer-reviewed publications while Chapter 5 includes the yet to be
published one. Finally, Chapter 6 concludes this thesis with a discussion
and a summary of this work and its future directions.

e The articles that Chapters 2-5 are based on are my original work as a
first author. However, these articles are also the fruit of the effort of
the supervisors and co-authors that assisted me during the period of my
PhD. For this reason, I decided to use the active plural voice (we and our)
instead of the singular voice (I and my) throughout the text.

e Chapter 2 has been published in [1]. The concept and theory of this work
has been developed by myself and M. Focchi. The formulation and imple-
mentation has been developed by myself with the support of M. Focchi.
The experiments were conducted and analyzed by M. Focchi with the sup-
port of C. Mastalli and myself. The manuscript was written by myself with
the support of M. Focchi and C. Mastalli, and was reviewed by C. Semini.

e Chapter 3 has been published in [2]. The concept and theory of this work
has been developed by myself and M. Focchi. The formulation and imple-
mentation has been developed by myself with the support of M. Focchi and
A. Radulescu. The experiments were conducted and analyzed by myself



with the support of M. Focchi and G. Fink. The manuscript was written
by myself with the support of M. Focchi and G. Fink, and it was reviewed
by A. Radulescu, V. Barasuol, and C. Semini.

Chapter 4 has been published in [3]. The concept and theory of this
work has been developed by myself with the support of G. Fink. The
formulation and implementation has been developed by myself with the
support of G. Fink. The experiments were conducted and analyzed by
myself and G. Fink. The manuscript was written by myself and G. Fink
and was reviewed by C. Semini.

Chapter 5 is under review. The concept and theory of this work has
been developed by myself and V. Barasuol. The formulation and imple-
mentation has been developed by myself with the support of D. Esteban,
O. Villarreal, and V. Barasuol. The experiments were conducted and an-
alyzed by myself with the support of V. Barasuol. The manuscript was
written by myself with the support of V. Barasuol, and it was reviewed by
D. Esteban, O. Villarreal, and C. Semini. Note that, part of this chapter
has been revised after the defense date.

The template style of this dissertation has been adopted from Alexander
Winkler’s dissertation [4].
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Introduction

Marc Raibert gave a broad definition of intelligence in a recent talk, and divided
it into: Cognitive Intelligence (CI) and Athletic Intelligence (AtI)[5]. CI al-
lows us to make abstract plans, and to understand and solve broader problems.
Atl on the other hand, allows us to operate our bodies in such a way that we
can balance, stand, walk, climb, etc. Atl also lets us do real-time perception so
that we can interact with the world around us. Marc also noted that although
not all of us are athletes, we still have a great amount of Atl in us. This thesis
is about Atl for legged robots; it can perhaps be one step towards reaching
animal-level Atl.
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1.1. Motivation

1.1 Motivation

Legged robots have been around for decades. Recently however, they have
shown remarkable agile capabilities thanks to the research efforts of academia
and industry. For this reason, legged robots are moving out of research labs into
the real world with the promise of being athletically intelligent. The promise is
that legged robots are to aid humans in various applications. The applications
include (but are not limited to) warehouse logistics, inspection at industrial
plants and construction sites, search and rescue, agriculture, package delivery,
space exploration, etc. In all of these applications, there is perhaps one thing
in common: none of the terrains that the robots traverse are the same. In fact,
these terrains are usually dynamic, unexplored, and uncertain. As a result, the
core problem is that the terrain that robots traverse introduces a large amount of
uncertainty. Therefore, for legged robots to achieve Atl and accomplish break-
throughs in dynamic whole-body locomotion, they have to be terrain aware.

Terrain-Aware Locomotion (TAL) means that the robot is able to perceive
and understand the surrounding terrain, and is able to take decisions based
on that. In other words, the robot has to have a good knowledge of its sur-
roundings and use whatever sensors it has to perceive these surroundings and
act upon them. The terrain itself may vary in its geometry or in its physi-
cal properties, and the decisions can either be in planning, control, or in state
estimation. To clarify, let us raise the following questions:

e Can the robot sense (see and feel) the world around it, and the terrain it
is traversing?

e Can the robot understand the differences between the geometrical and
physical properties of the terrain it is traversing?

e Can the robot plan its motion based on its understanding of the terrain
and its own limitations?

e Can the robot quickly adapt this planned motion in case something goes
wrong with it (such as falling, slipping, external pushes, etc.)?

If the answer is yes, then the robot is terrain aware.
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Figure 1.1: The Bigger Picture of Locomotion for Legged Robots. (a) an overview
of the pipeline used in locomotion strategies for legged robots. (b) an illustration
of the two categories of Terrain-Aware Locomotion (TAL).

1.2 The Bigger Picture

This section provides a broad overview of the pipeline used in locomotion strate-
gies for legged robots, and details on each block. As shown in Fig. 1.1(a), the
pipeline has four main modules: sensing, planning, adaptation and execution.

Sensing: This is the perception module that encapsulates all of the robot’s
ability to perceive itself and its surroundings. For that, the robot relies on
its onboard sensors to measure its base and joint states, and build a map of
its surroundings. These onboard sensors include IMUs, joint encoders, torque
sensors, as well as its onboard LIDARs and cameras.

Planning: This is the trajectory generation module that plans the motion
of the robot. The goal of the planning module is to understand the perceived
information from the sensing module, and plan a motion for the robot to take
accordingly. This motion tends to be a long term horizon motion.

Adaptation: The adaption module acts as an intermediate module between
the planning and execution modules. This module tends to be usually merged
with the planning module. However, it is important to understand the core
differences between both. The adaptation module has a re-planning nature.
This means that if the planned motion is not executed as programmed, or if
something goes wrong during execution (such as if the robots falls, slips or gets
disturbed or pushed), the adaptation module can be able to sense this right
away, and adapt the robot’s motion accordingly.

23



1.3. Terrain-Aware Locomotion (TAL)

Execution: After perceiving the sensed information, and after planning and
adapting the robot’s motion, the robot finally gets to execute this motion at the
joint level. Hence, the robot has to track its desired whole-body states while
reasoning about its own dynamics and limits, and about the surrounding terrain.

1.3 Terrain-Aware Locomotion (TAL)

TAL can be categorize into Proprioceptive Terrain-Aware Locomotion (PTAL)
and Exteroceptive Terrain-Aware Locomotion (ETAL) as shown in Fig. 1.1(b).
PTAL relies on the internal robot measurements (mainly its whole body states)
to acquire the terrain information that is surrounding the robot. ETAL relies
on directly acquiring this information using the robot’s visual sensing.

An early work on PTAL was on reflex actions that reactively adapt the
swinging legs trajectory to overcome obstacles if a collision is detected [6]. Since
proprioceptive sensors measures the internal robot states, detecting and localiz-
ing contacts on the robot is possible. For instance, some PTAL strategies rely on
the joint position, velocity and/or torque measurements to detect and localize
contacts [7, 8, 9], and to detect slippage [10, 11]. In addition to the terrain’s
geometry, PTAL strategies are also used to infer and adapt to the physical prop-
erties of the terrain. For instance, several works have adopted PTAL strategies
in locomotion planning and control over different terrain impedance parame-
ters [12, 2, 13]. In these works, the robot was able to detect changes in the
terrain impedance, and act upon it online.

PTAL strategies are useful in many scenarios when visual feedback is de-
nied (such as smoky areas, or areas with thick vegetation) or when the terrain
map is unreliable. However, based on their proprioceptive nature, the actions
from PTAL strategies are limited to corrective actions because predicting future
robot-terrain interactions using only the robot’s internal states is insufficient.
This means that PTAL strategies do not act on what is ahead of the robot.
Hence, an action has to happen first before triggering a reactive strategy; the
foot has to collide before triggering a step reflex, or touch the terrain before
inferring its physical properties.

Unlike PTAL, ETAL relies mainly on visual information. This gives ETAL
strategies the advantage of looking ahead of the robot. One famous ETAL
strategy is in selecting the best footholds based on the terrain information
and the capabilities of the legs. This is often referred to as foothold selec-
tion [14, 15, 16, 17]. Apart from foothold selection and similar to PTAL, ETAL
strategies have also been used to infer the terrain properties from images using
deep learning [18, 19, 20].
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1.4 Contributions

This thesis summaries our work done on TAL for legged robots. Our work in-
cludes strategies implemented for both PTAL and ETAL, and is applied at the
levels of planning, control, and state estimation. This thesis is divided into two
parts. The first part focuses on PTAL and the second part focuses on ETAL.
This thesis is based on four main articles. Three of which are peer-reviewed
journal papers [1, 2, 3] while the fourth is currently being prepared for submis-
sion. Each article is self-contained and is included in a stand-alone chapter. The
remainder of this section summarizes the motivation and contributions of each
of these articles.

C1: Passive Whole-Body Control for Quadruped Robots

(© 2019 IEEE. Reprinted, with permission. S. Fahmi, C. Mastalli, M. Foc-
chi and C. Semini, "Passive Whole-Body Control for Quadruped Robots:
Experimental Validation Over Challenging Terrain," in IEEE Robotics and
Automation Letters (RA-L), vol. 4, no. 3, pp. 2553-2560, July 2019,
doi: 10.1109/LRA.2019.2908502.

To achieve Atl as explained earlier in this chapter, the locomotion strategy
should be able to reason about the robot’s capabilities, and to be terrain aware.
Thus, as a first step, the first paper contributes to PTAL strategies by presenting
a Whole-Body Control (WBC) framework.

This paper presents a Passive Whole-Body Control (pWBC) framework for
quadruped robots, and focuses on the experimental validation. The pWBC is
aware of the terrain geometry and friction properties. Additionally, the pWBC
achieves dynamic locomotion while compliantly balancing the robot’s trunk. To
do so, we formulate the motion tracking as a Quadratic Program (QP) that
takes into account the full robot rigid body dynamics, the actuation limits, the
joint limits and the contact interaction. To be terrain aware, we encode the
terrain geometry (inclination), and frictional properties in the QP formulation.
To maintain contact consistency with the rigid terrain, we also encode the rigid
contact interaction in the QP formulation.

To validate the approach used in this paper, we analyze the pWBC’s ro-
bustness against inaccurate terrain friction properties, and the robot’s ability
to adapt to any sudden change in the actuation limits. We also present exten-
sive experimental trials on the Hy(Q) robot, and validate the PTAL capabilities
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of the pWBC under various terrain conditions and gaits. The paper also in-
cludes extensive implementation details gained from the experience with the
real platform.

C2: STANCE: Locomotion Adaptation over Soft Terrain

(© 2020 IEEE. Reprinted, with permission. S. Fahmi, M. Focchi, A. Rad-
ulescu, G. Fink, V. Barasuol and C. Semini, "STANCE: Locomotion Adapta-
tion Over Soft Terrain," in IEEE Transactions on Robotics (T-RO), vol. 36,
no. 2, pp. 443-457, April 2020, doi: 10.1109/TR0.2019.2954670.

Remark 1.1 This work has been selected as a finalist for the IEEE RAS Italian
Chapter Young Author Best Paper Award 2020, and for the IEEE RAS Technical
Committee on Model-Based Optimization for Robotics Best Paper Award 2020.

The previous paper presented a pWBC framework that was rigid contact
consistent. In other words, the pWBC was terrain aware with respect to rigid
terrain. In fact, most of WBC frameworks fail to generalize beyond rigid ter-
rains. To be terrain aware, the robot should be able to adapt to terrains with
different impedances. For that, we focused on extending the PTAL capabilities
of the previously presented pWBC, and adapting it to multiple terrains with
different impedances (such as soft terrain). We study compliant terrain since it
is an unsolved issue for legged locomotion. Legged locomotion over soft terrain
is difficult because of the presence of unmodeled contact dynamics that stan-
dard WBCs do not account for. This introduces uncertainty in locomotion and
affects the stability and performance of the system.

Therefore, this paper proposes a novel soft terrain adaptation algorithm
called Soft Terrain Adaptation aNd Compliance Estimation (STANCE). From
its name, STANCE consists of a Compliant Contact Consistent Whole-Body
Control (c*WBC) that is aware of the terrain impedance, and an online Terrain
Compliance Estimator (TCE) that senses and estimates the terrain impedance.
The c*WBC exploits the knowledge of the terrain to generate an optimal solution
that is contact consistent. This terrain knowledge is provided to the c>WBC by
the TCE.

In this paper, we show that STANCE can adapt online to any type of terrain
compliance (stiff or soft). To do so, we evaluated STANCE both in simulation
and experiment on Hy(Q), and we compared it with the state of the art pWBC
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from the previous paper. We demonstrated the capabilities of STANCE with
multiple terrains of different compliances, with aggressive maneuvers, different
forward velocities, and external disturbances. STANCE allowed Hy(Q) to adapt
online to terrains with different compliances (rigid and soft) without pre-tuning.
Hy(Q was able to successfully deal with the transition between different terrains
and showed the ability to differentiate between compliances under each foot.

C3: State Estimation for Legged Locomotion over Soft Terrain

(© 2021 IEEE. Reprinted, with permission. S. Fahmi, G. Fink and C. Sem-
ini, "On State Estimation for Legged Locomotion over Soft Terrain," in
IEEE Sensors Letters (L-SENS), vol. 5, no. 1, pp. 1-4, January 2021,
doi: 10.1109/LSENS.2021.3049954.

The previous STANCE paper presented a PTAL strategy to adapt to soft
terrain. One of the limitations of that paper was in state estimation for legged
robots over soft terrain. This is a limitation because most of the work done on
state estimation for legged robots is designed for rigid contacts, and does not take
into account the physical parameters of the terrain. Thus, this paper is a step
towards extending the PTAL capabilities of legged robots to state estimation.
In detail, this paper answers the following questions: how and why does soft
terrain affect state estimation for legged robots? To do so, we utilize a state
estimator that fuses IMU measurements with leg odometry that is designed with
rigid contact assumptions. We experimentally validate the state estimator with
Hy(Q trotting over both soft and rigid terrain. Then, we demonstrate that soft
terrain negatively affects state estimation for legged robots, and that the state
estimates have a noticeable drift over soft terrain compared to rigid terrain.

C4: ViTAL: Vision-Based Terrain-Aware Locomotion

(© 2022. Reprinted, with permission. S. Fahmi, V. Barasuol, D. Esteban,
O. Villarreal, and C. Semini, "ViTAL: Vision-Based Terrain-Aware Locomotion
for Legged Robots," (under review) in IEEE Transactions on Robotics (T-RO),
vol. X, no. X, pp. X=X, XXXX 202X, doi: XX.XXX/XXX.XXX.XXX.

Unlike the previous contributions that were PTAL strategies, the second part
of this thesis (and the fourth contribution) is an ETAL strategy. This work fo-
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cuses particularly on vision-based planning strategies that decouple locomotion
planning into foothold selection and pose adaptation. Despite the work done for
foothold selection, pose adaptation strategies lag behind. The core problem of
the current pose adaptation strategies is that they focus on finding one optimal
solution based on given selected footholds. This is a problem because there are
no guarantees on what would happen if the selected footholds are not reached,
or if the robot gets disturbed. If any of these cases happen, the robot may
end up in a pose that makes the feet reach kinematic limits, or collide with the
terrain. This would in turn compromise the robot’s performance and safety. To
solve this problem, we should not find body poses that are optimal with respect
to a given foothold, but rather find body poses that maximize the chances of
reaching safe footholds.

With this in mind, we present a locomotion planning strategy called Vision-
Based Terrain-Aware Locomotion (ViTAL). ViTAL consists of a pose adaptation
algorithm called Vision-Based Pose Adaptation (VPA), and a foothold selection
algorithm called Vision-Based Foothold Adaptation (VFA). The VFA is an ex-
tension of state of the art foothold selection strategies. The VPA introduces
a different paradigm for pose adaptation strategies. The VPA is a pose adap-
tation algorithm that finds the body pose that maximizes the number of safe
footholds based on a set of skills. The skills represent the capabilities of the
robot and its legs including the ability to assess the terrain’s geometry, avoid
leg collisions, and to avoid reaching kinematic limits during the swing and stance
phases. These skills are then learned via self-supervised learning using Convo-
lutional Neural Networks (CNNs). Therefore, ViTAL is an online strategy that
simultaneously plans the robot’s body pose and footholds based on the robot
capabilities.

To validate ViTAL, we use the Hy(Q) and Hy(QReal robots. Thanks to Vi-
TAL, our robots are able to climb various obstacles including stairs and gaps at
different speeds. We also compare the VPA with a baseline strategy that selects
the robot pose based on given selected footholds, and show that it is indeed not
robust enough to select robot poses based only on given footholds.
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Passive Whole-Body Control
for Quadruped Robots

(© 2019 IEEE. Reprinted, with permission. S. Fahmi, C. Mastalli, M. Foc-
chi and C. Semini, "Passive Whole-Body Control for Quadruped Robots:
Experimental Validation Over Challenging Terrain," in IEEE Robotics and
Automation Letters (RA-L), vol. 4, no. 3, pp. 2553-2560, July 2019,
doi: 10.1109/LRA.2019.2908502.

. J

Abstract. We present experimental results using a passive whole-body control
approach for quadruped robots that achieves dynamic locomotion while com-
pliantly balancing the robot’s trunk. We formulate the motion tracking as a
Quadratic Program (QP) that takes into account the full robot rigid body dy-
namics, the actuation limits, the joint limits and the contact interaction. We
analyze the controller’s robustness against inaccurate friction coefficient esti-
mates and unstable footholds, as well as its capability to redistribute the load
as a consequence of enforcing actuation limits. Additionally, we present prac-
tical implementation details gained from the experience with the real platform.
Extensive experimental trials on the 90 kg Hydraulically actuated Quadruped
(HyQ) robot validate the capabilities of this controller under various terrain
conditions and gaits. The proposed approach is superior for accurate execution
of highly dynamic motions with respect to the current state of the art.
Accompanying Video. https://youtu.be/Lg3V_juoElw
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2.1 Introduction

Achieving dynamic locomotion requires reasoning about the robot’s dynamics,
actuation limits and interaction with the environment while traversing challeng-
ing terrain (such as rough or sloped terrain). Optimization-based techniques can
be exploited to attain these objectives in locomotion planning and control of
legged robots. For instance, one approach is to use non-linear Model Predictive
Control (MPC) while taking into consideration the full dynamics of the robot.
Yet, it is often challenging to meet real-time requirements because the solver
can get stuck in local minima, unless proper warm-starting is used [21]. Thus,
current research often relies on low dimensional models or constraint relaxation
approaches to meet such requirements (e.g. [22]). Other approaches rely on
decoupling the motion planning from the motion control [23, 24, 25]. Along
this line, an optimization-based motion planner could rely on low dimensional
models to compute Center of Mass (CoM) trajectories and footholds while a
locomotion controller tracks these trajectories.

Many recent contributions in locomotion control have been proposed in the
literature that were successfully tested on bipeds and quadrupeds (e.g. [26,
27, 28, 29, 25, 30]). Some of them are based on quasi-static assumptions or
lower dimensional models [31, 32, 33]. This often limits the dynamic locomotion
capabilities of the robot [26]. Consequently, another approach, that is preferable
for dynamic motion, is based on Whole-Body Control (WBC). WBC facilitates
such decoupling between the motion planning and control in such a way that it
is easy to accomplish multiple tasks while respecting the robot’s behavior [29].
These tasks might include motion tasks for the robot’s end effectors (legs and
feet) [28, 29], but also could be utilized for contacts anywhere on the robot’s body
[34] or for a cooperative manipulation task between robots [35]. WBC casts the
locomotion controller as an optimization problem, in which, by incorporating
the full dynamics of the legged robot, all of its Degrees of Freedom (DoFs)
are exploited in order to spread the desired motion tasks globally to all the
joints. This allows us to reason about multiple tasks and solve them in an
optimization fashion while respecting the full system dynamics and the actuation
and interaction constraints. WBC relies on the fact that robot dynamics and
constraints could be formulated, at each loop, as linear constraints with a convex
cost function (i.e., a Quadratic Program (QQP)) [22]. This allows us to solve the
optimization problem in real-time.

Passivity theory is proven to guarantee a certain degree of robustness during
interaction with the environment [36]. For that reason, such tool is commonly

32



2.1. Introduction

exploited in the design of locomotion controllers to ensure a passive contact in-
teraction. Passivity based WBC in humanoids was introduced first by [37] to
effectively balance the robot when experiencing contacts. By providing com-
pliant tracking and gravity compensation, the humanoid was able to adapt to
unknown disturbances. The same approach was further extended first by [32]
and later by [28]. The former extended [37] to posture control, while the lat-
ter analyzed the passivity of a humanoid robot in multi-contact scenarios (by
exploiting the similarity with PD+ control [38]).

In our previous work [33], the locomotion controller was designed for quasi-
static motions using only the robot’s centroidal dynamics. Under that assump-
tion, we noticed that during dynamic motions, the effect of the leg dynamics
no longer negligible; and thus, it becomes necessary to abandon the quasi-static
assumption to achieve good tracking. Second, since the robot is constantly in-
teracting with the environment (especially during walking and running), it is
crucial to ensure a compliant and passive interaction. For these reasons, in this
paper, we improve our previous work [33] by implementing a passivity based
WBC that incorporates the full robot dynamics and interacts compliantly with
the environment, while satisfying the kinematic and torque limits. Our WBC
implementation is capable of achieving faster dynamic motions than our previ-
ous work. We also integrate terrain mapping and state estimation on-board and
present some practical implementation details gained from the experience with
the real platform.

Contributions: In this paper, we mainly present ezperimental contributions
in which we demonstrate the effectiveness of the controller both in simulation
and experiments on Hydraulically actuated Quadruped (Hy(Q). Compared to
previous work on passivity-based WBC [28, 32], in which experiments were
conducted on the robot while standing (not walking or running), we tested our
controller on Hy() during crawling and trotting. Similar to the recent successful
work of [25] and [39] in quadrupedal locomotion over rough terrain, we used
similar terrain templates to present experiments of our passive WBC on Hy(Q
using multiple gaits over slopes and rough terrain of different heights.

The rest of this paper is structured as follows: In Section 2.2 we present the
detailed formulation and design of our WBC followed by its passivity analysis in
Section 2.3. Section 2.4 presents further crucial implementation details. Finally
we present our simulation and experimental results in Section 2.5 followed by
our conclusions in Section 2.6.
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2.2. Whole-Body Controller (WBC)

2.2 Whole-Body Controller (WBC)

In this section we present and formulate our WBC. Figure 2.1 depicts the main
components of our locomotion framework. Given high-level user velocity com-
mands, the planner generates a reference motion online [40] or offline [24], and
provides it to the WBC. Such references include the desired trajectories for
CoM, trunk orientation and swing legs. The state estimator supplies the con-
troller with an estimate of the actual state of the robot, by fusing leg odometry,
inertial sensing, visual odometry and LIDAR while, the terrain estimator, pro-
vides an estimate of the terrain inclination (i.e. surface normal). Finally, there
is a momentum-based observer that estimates external disturbances [40] and a
lower-level torque controller.

The goal of the designed WBC is to keep the quadruped robot balanced
(during running, walking or standing) while interacting passively with the envi-
ronment. The motion tasks of a quadruped robot can be categorized into a trunk
task and a swing task. The trunk task regulates the position of the CoM and
the orientation of the trunk' and is achieved by implementing a Cartesian-based
impedance controller with a feed-forward term?. The swing task regulates the
swing foot trajectory in order to place it in the desired location while achiev-
ing enough clearance from the terrain. Similar to the trunk task, the swing
task is achieved by implementing a Cartesian-based impedance controller with
a feed-forward term. The WBC realizes these tasks by computing the opti-
mal generalized accelerations and contact forces [26] via QP and mapping them
to the desired joint torques while taking into account the full dynamics of the
robot, the properties of the terrain (friction constraints), the unilaterality of the
contacts (e.g. the legs can only push and not pull) (unilateral constraints), and
the actuator’s torque/kinematic limits. The desired torques, will be sent to the
lower-level (torque) controller.

2.2.1 Robot Model

For a legged robot with n DoFs and ¢ feet, the forward kinematics of each foot
is defined by n, coordinates®. The total dimension of the feet operational space
is ny = ngc. This can be separated into stance (ng = ngcs) and swing feet

1Since HyQ is not equipped with arms, it suffices for us to control the trunk orientation
instead of the whole robot angular momentum.

2This is similar to a PD+ controller [38].

3Without the loss of generality, we consider a quadruped robot with n = 12 DoFs with
point feet, where ¢ = 4 and n, = 3.
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2.2. Whole-Body Controller (WBC)

(Nsw = NuCsyw). Since we are interested in regulating the position of the CoM,
we formulate the dynamics in terms of the CoM, using its velocity rather than
the base velocity? [32]. Assuming that all the external forces are exerted on the
stance feet, we write the equation of motion that describes the full dynamics of
the robot as:

Mcorn 06Xn][‘.’com] [hcom] 06><n [13; com]
27 . + e = + i F 2 . 1
[ 0n><6 M] G h] Tj JSY‘;’J grf ( )
———— e N — [
M(q) g h Jst ()T

where the first 6 rows represent the (un-actuated) floating base part and the
remaining n rows represent the actuated part. g € SE(3) X R” represents the

pose of the whole floating-base system while ¢ = [chom q]T]T € R6*" and ¢ =

T
[Vcom

respectively. Veom = [XL, wZ]T € RS and Veom = [£,, cbZ]T € R® are the
spatial velocity and acceleration of the floating-base expressed at the CoM.
M(q) € RO+x6+) g the inertia matrix, where Meom(q) € R%C is the composite
rigid body inertia matrix of the robot expressed at the CoM. h € R6*" is the force
vector that accounts for Coriolis, centrifugal, and gravitational forces’. t € R"
are the actuated joint torques while Fy ¢ € R™t is the vector of Ground Reaction
Forces (GRFs) (contact forces). In this context, the floating base Jacobian J
e Rux(6+n) ig separated into swing Jacobian Jg, € RswX(6+1) and stance Jacobian
Jyt € Rs%(6+7) which could be further expanded into Jst.com € R™tX6 Jst,j € R,
Jsw.com € R0 and Jsw,j € R™*" The operator [-] denotes the matrices /vectors
recomputed after the coordinate transform to the CoM [37]. Following the sign
convention in Fig. 2.1, recalling the first 6 rows in (2.1), and by defining the
gravito-inertial CoM wrench as Weom = MeomVeom + Heom € RS we can write the
floating-base dynamics as:

qu]T € R are the vectors of generalized velocities and accelerations,

Weom = JT

st,com

Fort (2.2)

such that JZ maps Fgrf to the CoM wrench space.

st,com
The feet velocities v = [vSTt vI T € R™ could be separated into stance v

€ R™t and swing vsy € R™v feet velocities. The mapping between v and the

4In this coordinate system, the inertia matrix is block diagonal [32]. For the detailed
implementation of the dynamics using the base velocity, see [37].

SNote that heom = —mg+Veom X* MeomVeom according to the spatial algebra notation, where
m is the total robot mass.
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generalized velocities ¢ is:
v = Jg (2.3a)
v = [Jeom Jj] [VC?@]

4j

such that Jeom € R™*6 and J ;€ R Similar to the feet velocities, we split the
feet force vector F = [F;; FL T € R into Fy € R™t and Fy,, € R™v.

JeomVeom + Jjéj (23b)

Assumption 2.1 The robot is walking over rigid terrain in which the stance feet
do not move (i.e., vy = Vg = 0).

2.2.2 Trunk and Swing Leg Control Tasks

To compliantly achieve a desired motion of the trunk, we define the desired
wrench at the CoM Weopmq using the following: 1) a Cartesian impedance at the
CoM Wi, that is represented by a stiffness term (VVeomk = KcomAXcom) With
positive definite stiffness matrix Keom € R%® and a damping term (DeomAvVeom )
with positive definite damping matrix Deom € R, 2) a virtual gravitational
potential gradient to render gravity compensation (VViomg = mg)°, 3) a feed-
forward term to improve tracking (Wg = McomVeomd) and a compensation term
for external disturbances —Wey; [40]:

Wcom,d = Wimp + VVcom,g + Wi — Wext (2.4&)
Wimp = chom,K + DeomAVeom (2.4b)

such that Axcom = Xcomd — Xcom, AVeom = Veomd — Veom are the tracking errors
€ RS of the position and velocity, respectively.

Similarly, the tracking of the swing task is obtained by the virtual force
Fiwa € R™v. This is generated by 1) a Cartesian impedance at the swing foot
that is represented by a stiffness term (VViy, = KswAxsy) with positive definite
stiffness matrix Kgy € R™™v and a damping term (DsyAvgy) with positive
definite damping matrix Dgy, € R™¥*™sv and 2) a feedforward term to improve
tracking (st,ff = Msw‘.’swﬂ)5

Fswa = VViw + DswAvey + Fow it (25)

such that Axgy = Xsw.d — Xsw and Avey = Vew.d — Vsw are the tracking errors of the
swing feet positions and velocities respectively. Alternatively, it is possible to

GVV[_] denotes the gradient of a potential function V[ ;. For more information regarding the
Cartesian stiffness and gravitational potentials, see [28].
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2.2. Whole-Body Controller (WBC)

write this task at the acceleration level, with the difference that the gains Kgy
and Dgy have no physical meaning:

‘."sw,d = VSW,H + KswAXsw + DgwAvgy (26)

2.2.3 Optimization

To fulfill the motion tasks in Section 2.2.2 and to distribute the load on the
stance feet, while respecting the mentioned constraints, we formulate the QP:

i _ 2 2
e W = Weomall el (272)
d<Cu<d (2.7¢)

such that our decision variables u = [T FgTrf]T € RO+t are the generalized
accelerations ¢ and the contact forces Fgyr. The cost function (2.7a) is designed
to minimize the trunk task and to regularize the solution. The equality con-
straints (2.7b) encode dynamic consistency, stance constraints and swing tasks.
The inequality constraints (2.7c) encode friction constraints, joint kinematic and
torque limits. All constraints are stacked in the matrix AT = [A] AL AL

and CT = [CfTr CjT cr | and detailed in the following sections.

2.2.3.1 Cost

The first term of the cost in (2.7a) represents the tracking error between the
actual Weom and the desired Weom g CoM wrenches from (2.2) and (2.4a) respec-
tively. Since Weon is not a decision variable, we compute it from the contact
forces (see (2.2)) and re-write ||Weom — Wcom,d”é in the form of ||Gu — ggllé with:

G = [06x(6+n) JsTt,com] > 80 = Wcom,d (28)

2.2.3.2 Physical consistency

To enforce physical consistency between Fyf and §, we impose the dynamics of
the unactuated part of the robot (the trunk dynamics in (2.2)) as an equality
constraint:

AP = [Mcom O65n _Jsjg,com] > bp = —hcom (29)

38



2.2. Whole-Body Controller (WBC)

2.2.3.3 Stance condition

We can encode the stance feet constraints by re-writing them at the acceleration
level in order to be compatible with the decision variables. Since vy = Jyq,
differentiating once in time, yields to vs = Jst§ + J'stc]. Recalling Assumption 2.1
yields Jst§ + Jstg = 0 which is encoded as:

ASt = [JSt Onstant] P bst = - .stq. (2.10)

such that Jy is the time derivative of Jg. For numerical precision, we compute
the product Jy ¢ using spatial algebra.

2.2.3.4 Swing task

Similar to Section 2.2.3.3, we can encode the swing task directly as an equality
constraint, i.e. by enforcing the swing feet to follow a desired swing acceleration
Vsw(q) = Vsw.a € R™" yielding:

]swq + jswq = ‘."sw,d (2-11)

that in matrix form becomes’:

Asw = [sz Onswxnst] s bsw = sz,d - szq (2-12)

where we computed vVgy q as in (2.6). Note that this implementation is analogous
to the trunk task in Section 2.2.2. The difference is that this implementation is
at the acceleration level while the other is at the force level. However, without
any loss of generality, the formulation (2.5) could also be used. In Section 2.4.2
we incorporate slacks in the optimization to allow temporary violation of the
swing tasks (e.g. useful when the kinematic limits are reached).

2.2.3.5 Friction cone constraints

To avoid slippage and obtain a smooth loading/unloading of the legs, we incor-
porate friction/unilaterality constraints. For that, we ensure that the contact
forces lie inside the friction cones and their normal components stay within
some user-defined values (i.e. maximum and minimum force magnitudes). We
approximate the friction cones with square pyramids to express them with linear
constraints. The fact that the ground contacts are unilateral, can be naturally

7 Alternatively, it is possible to write the swing task at the joint space rather than in the
operational space by changing the matrix Asw, bsw-
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2.2. Whole-Body Controller (WBC)

encoded by setting an “almost-zero” lower bound on the normal component,
while the upper bound allows us to regulate the amount of “loading” for each
leg. We define the friction inequality constraints as:

dy < Cit < dpy,  Ciy = [Opon)  Fir] (2.13)
with: )
FO ce 0 iO . fO

Fp=|t 0 |, dy=|1|, du=]|: (2.14)
0 ... F. f 1o

~c
where Fy € RP*t is a block diagonal matrix that encodes the friction cone
boundaries and select the normals, for each stance leg and d, di, € RP are the
lower /upper bounds respectively. For the detailed implementation of the friction
constraints refer to [33].

2.2.3.6 Torque limits

We notice that the torques be obtained from the decision variables since they
can be expressed as a bi-linear function of §; and Fgt. Therefore, the constraint
on the joint torques (i.e., the actuation limits Tyin < 7j < Tmax) can be encoded
by exploiting the actuated part of the dynamics (2.1):

d. < Ciu<de, Cr=[0ie M; —J%;] (2.15)

QT = _Ijlj + Tmin(‘]j)’ dr = _l_lj + Tmax(‘]j)

where Tiin(g;), Tmax(qj) € R" are the lower/upper bounds on the torques.
In the case of our quadruped robot, these bounds must be recomputed at each
control loop because they depend on the joint positions. This is due to the
presence of linkages on the sagittal joints (HFE and KFE), that set a joint-
dependent profile on the maximum torque (non-linear in the joint range).

2.2.3.7 Joint kinematic limits

We enforce joint kinematic constraints as function of the joint accelerations (i.e.
Gimin < i < Gjnae)- We select them via the matrix C;:

dj < Cju < CZJ', Ci= [On><6 Lysen Onxnst] (2'16)
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2.3. Passivity Analysis

such that §;,..(¢;) and §;,, (¢g;) are the upper/lower bounds on accelerations.
These bounds should be recomputed at each control loop. They are set in order
to make the joint to reach the end-stop at a zero velocity in a time interval
At = 10dt, where dt is the loop duration. For instance, if the joint is at a
distance gj, .. — g; from the end-stop with a velocity ¢;, the deceleration to
cover this distance in a time interval At, and approach the end-stop with zero
velocity, will be:

" 2 .
qjmin,max = _A_lg(qjmin,max - q] - Al qJ) (218)

2.2.4 Torque computation

We map the optimal solution u* = [6]* Fgrf] obtained by solving (2.7), into

desired joint torques 7; € R" using the actuated part of the dynamics equation
of the robot as:

T; :qu"j*-l-ljlj—JT F*

st,j grf (219)

2.3 Passivity Analysis

The overall system consists of the WBC, the robot and the environment. This
system is said to be passive if all these components, and their interconnections
are passive [36]. If the robot and the environment are passive, and the controller
is proven to be passive, then the overall system is passive [41]. A system (with
input u# and output y) is said to be passive if there exists a storage function
S that is bounded from below and its derivative S is less than or equal to its
supply rate (s = y'u). In this context, we define the total energy stored in the
controller to be the candidate storage function for the controller S = V. The
rest of this section is devoted to analyze the passivity of the overall system.

Assumption 2.2 A feasible solution exists for the QP in (2.7) in which the
motion tasks are achieved. Moreover, we do not consider the feed-forward terms
in (2.4a) and (2.5) leaving this to future developments.

We start by defining the velocity error at the joints and at the stance feet
to be Agj = Gja — qj, and Avg = vsq — Vs, respectively. We also define the

desired feet forces Fy = [FSTt d FS{N’ d]T such that, by following the sign convention
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2.3. Passivity Analysis

in Fig. 2.1, the mapping between Fy and Weon q is expressed as®:

T
WCOm,d =-J com

Fg, (2.20)
while mapping between F; and 7; is expressed as’
_ T
T = JFa (2.21)

By defining VVeom = VVeomK + VVeomg and recalling (2.20), we rewrite (2.4a)
under Assumption 2.2 as:

VVcom = Wcom,d - DcomAvcom (222&)
_JcTomFd — DeomAveom. (2.22b)

2.3.1 Analysis

The overall energy in the whole-body controller is the one stored in the virtual
impedance at the CoM and the potential energy due to gravity compensation
(Veom ), and the energy stored in the virtual impedances at the swing feet (Vi )'%:

V = Veom + Viw- (2.23)

The time derivatives are'!:

V = Veom + Vow = AVL VViom + AV VViy. (2.24)
Recalling (2.5) and (2.22b), (2.24) yields:

V = AVT (—Jg;)mFd_DcomAVCOm)"'

com

A"'g;;v(st,d - DSWAVSW))~ (2.25)

We regroup V in terms of the non-damping terms V; and damping terms V5
yielding;:
Vi = AV JE L Fa+ AVE Fag (2.26a)
Voo = —AVI . DeomAveom — AvE, Dy Avgy,. (2.26b)

8Since we are analyzing the passivity of the controller, we are interested in the forces
exerted by the robot on the environment rather than the forces exerted by the environment
on the robot. Hence the mapping in (2.20) is negative.

9 Assuming a perfect low level torque control tracking (i.e., 74 = 7).

10Tn this analysis we use the formulation (2.5).

U The time derivative of an arbitrary storage function V(Ax(¢)) that is a function of Ax(r)
could be written as V = %AxT(t) : &%(I)V that is written for short as V = AvT VV.
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We rewrite (2.3b) in terms of Aveom, Av and Agj as:

Av = JeomAvVeom + JiAg; (2.27a)
AT -Ag T+ AT (2.27h)

Plugging, (2.27b) in (2.26a) yields'?
Vi = AGJFa— M Fy+ AVl Fva (2.28a)
= A¢]J] Fa— AV Fa. (2.28b)
Plugging (2.21) and into (2.28b) yields:
Vi = Ag T - AV Fya. (2.29)
Under Assumption 2.1, (2.29) yields:
i = At (2.30)
Thus, V could be rewritten as:

DecomAVeom — Av wDswAVsy . (2.31)

com

V= Aq'jT - A

2.3.2 Proof

Under Assumption 2.2, the designed WBC is an impedance control with gravity
compensation that, Slmllar to a PD+ [38], defines a map of (¢g; — Jd) -
This controller is passive if V is bounded from below and V < Aq 7. Since V
consists of positive definite potentials that resemble Cartesian stlffnesses at the
CoM and the swing leg(s), and under the assumption the gravitational potential
is bounded from below (see [42]), V is also bounded from below. Additionally,
recalling (2.31) proves that the controller is indeed passive; thus, the overall
system is passive.

2.4 Implementation Details

This section describes some pragmatic details that we found crucial in the im-
plementation on the real platform.

12From the definition of v and Fy, we get vI Fy = vSTtht,d + VsTwst,d-
3Note that 4j—4g;,d = —Ag;. Thus, the controller with the map (¢; —¢ja) — —7 has a supply
rate of quT‘r.
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2.4.1 Stance task

Uncertainties in estimating the terrain’s normal direction and friction coefficient
could result in slippage. This can lead to considerable motion of the stance feet
with possible loss of stability. To avoid this, a joint impedance feedback loop
could be run in parallel to the WBC, at the price of losing the capability of
optimizing the GRFs. A cleaner solution is to incorporate, in the optimization,
Cartesian impedances specifically designed to keep the relative distance among
the stance feet constant (we denote it stance task).

The stance task has an influence only when there is an anomalous motion in
the stance feet, retaining the possibility to freely optimize for GRFs in normal
situations. This can be achieved by re-formulating the stance condition in (2.10)
as a desired stance feet acceleration vgq as:

Vst,d = Kt (Xst — Xst) — DstVet. (2'32)

This term is added to by (in (2.10)) as by, = —jst62+5fjéz where Xy is a sample
of the foot position at the touchdown (expressed in the world frame).

2.4.2 Constraint Softening

Adding slack variables to an optimization problem is commonly done to avoid
infeasible solutions, by allowing a certain degree of constraint violation. Infea-
sibility can occur when hard constraints are conflicting with each other, which
can be the case in our QP. Hence, some of the equalities/inequalities in (2.7)
should be relaxed if they are in conflict.

We decided not to introduce slacks in the torque constraints (Section 2.2.3.6)
or the dynamics (Section 2.2.3.2) keeping them as hard constraints, since torque
constraints and physical consistency should never be violated. On the other
hand it is important to allow a certain level of relaxation for the swing tasks in
Section 2.2.3.4 that could be violated if the joint kinematic limits are reached'*.

To relax the constraints of the swing task, first, we augment the decision
variables it = [ul €']7 € R6*"*+k+msw with the vector of slack variables e € R
where we introduce a slack variable for each direction of the swing tasks. Then,
we replace the equality constraint Ag,u + by, = 0 of the swing tasks, by two
inequality constraints:

—e < Al + by, < €
€>0. (2.33)

14Using slacks in friction constraints did not result in significant improvements.
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The first inequality in (2.33) restricts the solution to a bounded region around
the original constraint while the second one ensures that the slack variables
remain non-negative. To make sure that there is a constraint violation only
when the constraints are conflicting, we minimize the norm of the slack vector
adding a regularization term a||€||? to (2.7a) with a high weight a.

To reduce the computational complexity, we could have introduced a single
slack for each swing task (rather than one for each direction). However, this
could create coupling errors in the tracking. For instance, since the Hip Flexion-
Extension (HFE) joint (see Fig. 2.1) mainly acts in the XZ plane, if it reaches its
joint limit, only that plane should be affected leaving the Y direction unaffected.
A single slack couples the three directions causing tracking errors also in the Y
direction. Conversely, using multiple slacks, only the directions the HFE acts
upon, will be affected.

2.5 Results

In this section we validate the capabilities of the controller under various ter-
rain conditions and locomotion gaits. The WBC and torque control loops run
in real-time threads at 250 Hz and 1kHz, respectively. We set the gains for the
swing tasks to Kj,, = diag(2000, 2000, 2000) and Dy, = diag(20, 20, 20), while for
the trunk task we set K, = diag(2000, 2000, 2000) D, = diag(400, 400,400) and
Ky = diag(1000, 1000, 1000) Dy = diag(200, 200, 200). These values proved to be
working in both simulation and real experiments. The results are collected in
the accompanying video'?. Additionally, in experimental trials, we also included
a low gain joint-space attractor (PD controller) for the swing task, since impre-
cise torque tracking of the knee joints (due to the low inertia) produce control
instabilities in an operational space implementation (e.g. the one in Section
2.2.34).

2.5.1 Constraint Softening through Slack Variables

In Fig. 2.2 we artificially incremented the lower limit of the LH-HFE joint. When
the limit is hit, the bound on the joint acceleration (2.18) produces a desired
torque command that stops its motion. This “naturally” clamps the actual joint
position to the limit (bottom-left plot) and influences the foot tracking mainly
along the X and Z directions.

15Link: https://youtu.be/Lg3V_juoElw
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Figure 2.2: Simulation. Effect of (kinematic limits) slacks variables on foot track-
ing. The upper-left/right and bottom-left plots show the tracking of the desired
foot position (LH leg) in X, Y and Z, respectively. Bottom-right plot depicts the
joint limits (black line) and the actual position (blue line) of the HFE joint. The
red shaded area underlines that when the slack increases, the HFE joint is properly
clamped.

Computational time: the solution of the QP takes between 90-110 us on a
Intel i5 machine without the slacks variables. After augmenting the problem
with the slack variables and its constraints, it increases 30 % on average (120-

150 us). However it still remains suitable for real-time implementation (250
Hz).

2.5.2 Friction Constraints and Bounded Slippage

We evaluated in simulation the controller performance against inaccurate fric-
tion coefficient estimates u, which define incorrectly the friction cone constraints
in the WBC. In the accompanying video, we show an example where the robot
crawls at 0.11m/s on a slippery floor (u = 0.4) while we set the friction coeffi-
cient to u = 1.0 in the WBC, to emulate an estimation error. Simulation results
support the fact that foot slippage remains bounded by the action of the stance
task (Section 2.4.1). If we gradually correct u the slippage events completely
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Figure 2.3: Simulation. Effect of introducing an artificial torque limit on the KFE
joint of the LF leg during a typical crawl. The shaded area represents the swing
phase of the leg while the unshaded part is the stance phase. We reduced the torque
limit down to 26 Nm (black line, upper plot), and as a consequence, the HFE torque
is increased by the controller (bottom plot).

disappear; allowing an increase of forward velocity up to 0.16 m/s.

2.5.3 Torque Limits and Load Redistribution

We analyzed in simulation the effect of adding an artificial torque limit, in our
WBC. This helps us to derive controllers that are robust against joint damages.
Figure 2.3 shows a reduction of the torque limits down to 26 Nm in the Left-Front
(LF)-KFE joint and the load redistribution among the other joints (HAA and
HFE) of the LF leg. Indeed, while the KFE joint torque is clamped, the HFE
is loaded more (lower plot). This load redistribution did not affect the trunk
motion and it demonstrates how the controller exploits the torque redundancy
by finding a new load distribution. We carried out also intensive experimental
validation in various challenging terrains. Slopes increase the probability of
reaching torque limits because of the more demanding kinematic configurations.
Indeed, in Fig. 2.4, the robot reached three times the torque limits (red shaded
areas). Crossing this terrain would not be possible without enforcing the torque
limits as hard constraints.
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Figure 2.4: Real experiments. Reaching the torque limits on the RF-HFE joint
while climbing up and down two ramps. The HyQ robot reached three times its
torque limits (red shaded areas). The real torque (blue line) is tracking the desired
one (not shown) computed from our whole-body controller while satisfying the joint
limits (black line). The torque limits are time-varying due to the joint mechanism.

2.5.4 Different Torque Regularization Schemes

By setting different regularizations in (2.7a) [33], we can either choose to maxi-
mize the robustness to uncertainties in the friction parameters (e.g. GRFs closer
to the friction cone normals) or to minimize the joint torques'®. In the latter
case, for instance, we could encourage the controller to use a particular joint by
increasing its corresponding weight. If we gradually increase the weight of the
Knee Flexion-Extension (KFE) joints (see accompanying video), the effect of
torque regularization becomes visible because the GRFs are no longer vertical.
Indeed the GRFs start to point toward the knee axis in order to reduce its torque
command.

2.5.5 Comparison with Previous Controller (Quasi-Static)

We compare our whole-body controller (dynamic) against a centroidal-based
controller (quasi-static) [33]. As metric we use the /2-norm for the linear e, and
angular eg tracking errors of the trunk task. If we increase linearly the forward
speed from 0.04m/s to 0.15m/s, the tracking error is reduced approximately by
50 % in comparison to the quasi-static controller (Fig. 2.5). This is due to the

16Setting the weighting matrix Rix = Jg ST R-SJL where: Ry is the sub-block of R that
regularizes for GRFs variables in (2.7) and S selects the actuation joints.
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—static
—-dynamic

Figure 2.5: Simulation. Comparison of tracking errors for the trunk task of a quasi-
static controller against our whole-body controller (dynamic). /2-norms of linear and
angular errors are shown in the top and bottom figures. Note that the errors are
reset to zero at each step due to re-planning.

fact that our WBC computes both joint accelerations and contact forces, which
allows a proper mapping of torque commands (inverse dynamics). Indeed this
results in better accuracy in the execution of more dynamic motions.

2.5.6 Disturbance Rejection against Unstable Foothold

We encoded compliance tracking of the CoM task through a wvirtual impedance.
Friction cone constraints help to instantaneously keep the robot’s balance when-
ever a tracking error happens due to, for instance, an unstable foothold. Further-
more joint constraints (positions and torques) guarantee feasibility of the com-
puted torque commands. Figure 2.6 shows how the controller compliantly tracks
the desired CoM trajectory during an unstable footstep (a rolling stepping-stone)
that occurs at t = 6.5s (experiments results from [43]). This creates tracking
errors on the CoM height, yet, good tracking performance is kept for the hor-
izontal CoM motion, due to the friction cone constraints that maintained the
robot’s balance along the entire locomotion.
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Figure 2.6: Real experiments. Disturbance rejection against unstable foothold that
occurs when a stepping-stone rolled under the RF leg at t = 6.5s. The controller
lost tracking of the CoM height, however, the friction cone constraints keep instan-
taneously the robot's balance. Indeed a good tracking of the horizontal motion of
the CoM is obtained. Note that the red shaded area depicts the moments of the
disturbance rejection.

2.5.7 Locomotion over Slopes

These experiments have been performed with online terrain mapping [40]. Both
the terrain mapping and the whole-body controller make use of a drift-free state
estimation algorithm to obtain the body state. The friction cone constraints
of the controller are described given the real terrain normals provided by an
onboard mapping algorithm'”. The friction coefficient has been conservatively
set to 0.7 for all the experiments. Figure 2.7 shows different snapshots of various
challenging terrain used to evaluate our controller. The centroidal trajectory,
gait and footholds are computed simultaneously as described in [24].

1"The controller action can be greatly improved by setting the real terrain normal (under
each foot) rather than using a default value for all the feet.
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TR
R R

Figure 2.7: Snapshots of experimental trials to evaluate our whole-body control
and the online terrain mapping. Left column: crossing a 22cm gap with a 7cm
step. Right column: traversing two ramps with a 15cm gap between them.

2.5.8 Tracking Performance with Different Gaits

The quadrupedal trotting gait is difficult to control because the robot uses only
two legs at the time to achieve the tracking of the desired CoM motion and of
the trunk orientation. Figure 2.8 depicts the roll and pitch tracking for climbing
up a ramp during a trotting gait. Although a trot is an under-actuated gait,
our controller can still track the desired orientation. Moreover, in these cases,
the orientation error is always below 0.2 rad.

2.6 Conclusion

This paper presented an experimental validation of our passive WBC. Compared
to our previous work [33], the presented WBC enables higher dynamic motions
thanks to the use of the full dynamics of the robot. Although similar controllers
have been proposed in the literature (e.g. [26, 28, 25]), we validated our lo-
comotion controller on Hy() over a wide range of challenging terrain (slopes,
gaps, stairs, etc.), using different gaits (crawl and trot). Additionally, we have
analyzed the controller capabilities against 1) inaccurate friction coefficient es-
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Figure 2.8: Real experiments. Roll and pitch tracking performance while climbing
up a ramp with a trotting gait. Although there is under-actuation the controller can
still track roll and pitch motions.

timation, 2) unstable footholds, 3) changes in the regularization scheme and
4) the load redistribution under restrictive torque limits. Extensive experimen-
tal results validated the controller performance together with the online terrain
mapping and the state estimation. Moreover, we demonstrated experimentally
the superiority of our WBC compared to a quasi-static control scheme [33].
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STANCE:
Locomotion Adaptation over Soft Terrain

(© 2020 IEEE. Reprinted, with permission. S. Fahmi, M. Focchi, A. Rad-
ulescu, G. Fink, V. Barasuol and C. Semini, "STANCE: Locomotion Adapta-
tion Over Soft Terrain," in IEEE Transactions on Robotics (T-RO), vol. 36,
no. 2, pp. 443-457, April 2020, doi: 10.1109/TR0.2019.2954670.

Abstract. Whole-Body Control (WBC) has emerged as an important frame-
work in locomotion control for legged robots. However, most WBC frameworks
fail to generalize beyond rigid terrains. Legged locomotion over soft terrain is
difficult due to the presence of unmodeled contact dynamics that WBCs do not
account for. This introduces uncertainty in locomotion and affects the stability
and performance of the system. In this paper, we propose a novel soft terrain
adaptation algorithm called STANCE: Soft Terrain Adaptation and Compliance
Estimation. STANCE consists of a WBC that exploits the knowledge of the
terrain to generate an optimal solution that is contact consistent and an online
terrain compliance estimator that provides the WBC with terrain knowledge.
We validated STANCE both in simulation and experiment on the Hydraulically
actuated Quadruped (HyQ) robot, and we compared it against the state of the
art WBC. We demonstrated the capabilities of STANCE with multiple terrains
of different compliances, aggressive maneuvers, different forward velocities, and
external disturbances. STANCE allowed Hy(Q to adapt online to terrains with
different compliances (rigid and soft) without pre-tuning. Hy(Q was able to
successfully deal with the transition between different terrains and showed the
ability to differentiate between compliances under each foot.

Accompanying Video. https://youtu.be/0BI4581DFjY
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3.1. Introduction

3.1 Introduction

Whole-Body Control (WBC) frameworks have achieved remarkable results in
legged locomotion control [29, 44, 1]. Their main feature is that they use opti-
mization techniques to solve the locomotion control problem. WBC can achieve
multiple tasks in an optimal fashion by exploiting the robot’s full dynamics
and reasoning about both the actuation constraints and the contact interaction.
These tasks include balancing, interacting with the environment, and performing
dynamic locomotion over a wide variety of terrains [1]. The tasks are executed
at the robot’s end effectors, but can also be utilized for contacts anywhere on
the robot’s body [34] or for a cooperative manipulation task between robots [35].

To date, most of the work done on WBC assumes that the ground is rigid
(i.e., rigid contact consistent). However, if the robot traverses soft terrain (as
shown in Fig. 3.1), the mismatch between the rigid assumption and the soft con-
tact interaction can significantly affect the robot’s performance and locomotion
stability. This mismatch is due to the unmodeled contact dynamics between
the robot and the terrain. In fact, under the rigid ground assumption, the
controller can generate instantaneous changes to the Ground Reaction Forces
(GRFs). This is equivalent to thinking that the terrain will respond with an
infinite bandwidth.

In order to robustly traverse a wide variety of terrains of different compli-
ances, the WBC must become compliant contact consistent (c*). Namely, the
WBC should be terrain-aware. That said, a more general WBC approach should
be developed that can adapt online to the changes in the terrain compliance.

3.1.1 Related Work:
Soft Terrain Adaptation for Legged Robots

Locomotion over soft terrain can be tackled either from a control or a planning
perspective. In the context of locomotion control, Henze et al. [28] presented
the first experimental attempt using a WBC over soft terrain. Their WBC is
based on the rigid ground assumption, but it allows for constraint relaxation.
This allowed the humanoid robot TORO to adapt to a compliant surface. Their
approach was further extended in [45] by dropping the rigid contact assumption
and using an energy-tank approach. Despite balancing on compliant terrain,
both approaches were only tested for one type of soft terrain when the robot
was standing still.

Similarly, other works explicitly adapt to soft terrain by incorporating terrain
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3.1. Introduction

Figure 3.1: HyQ traversing multiple terrains of different compliances.

knowledge (i.e., contact model) into their balancing controllers. For example,
Azad et al. [46] proposed a momentum based controller for balancing on soft
terrain by relying on a nonlinear soft contact model. Vasilopoulos et al. [47]
proposed a similar hopping controller that models the terrain using a viscoplastic
contact model. However, these approaches were only tested in simulation and
for monopods.

In the context of locomotion planning, Grandia et al. [48] indirectly adapted
to soft terrain by shaping the frequency of the cost function of their Model
Predictive Control (MPC) formulation. By penalizing high frequencies, they
generated optimal motion plans that respect the bandwidth limitations due to
soft terrain. This approach was tested over three types of terrain compliances.
However, it was not tested during transitions from one terrain to another. This
approach showed an improvement in the performance of the quadruped robot in
simulation and experiment. However, the authors did not offer the possibility
to change their tuning parameters online. Thus, they were not able to adapt
the locomotion strategy based on the compliance of the terrain.

In contrast to the aforementioned work, other approaches relax the rigid
ground assumption (hard contact constraint) but not for soft terrain adaptation
purposes. For instance, Kim et al. [49] implemented an approach to handle
sudden changes in the rigid contact interaction. This approach relaxed the
hard contact assumption in their WBC formulation by penalizing the contact
interaction in the cost function rather than incorporating it as a hard constraint.
For computational purposes, Neunert et al. [50] and Doshi et al. [51] proposed
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relaxing the rigid ground assumption. Neunert et al. used a soft contact model
in their nonlinear MPC formulation to provide smooth gradients of the contact
dynamics to be more efficiently solved by their gradient based solver. The soft
contact model did not have a physical meaning and the contact parameters were
empirically chosen. Doshi et al. proposed a similar approach which incorporates
a slack variable that expands the feasibility region of the hard constraint.

Despite the improvement in performance of the legged robots over soft ter-
rain in the aforementioned works, none of them offered the possibility to adapt
to the terrain online. Most of the aforementioned works lack a general approach
that can deal with multiple terrain compliances or with transitions between
them. Perhaps, one noticeable work (to date) in online soft terrain adapta-
tion was proposed by Chang et al. [52]. In that work, an iterative soft terrain
adaptation approach was proposed. The approach relies on a non-parametric
contact model that is simultaneously updated alongside an optimization based
hopping controller. The approach was capable of iteratively learning the terrain
interaction and supplying that knowledge to the optimal controller. However,
because the learning module was exploiting Gaussian process regression, which
is computationally expensive, the approach did not reach real-time performance
and was only tested in simulation, for one leg, under one experimental condition
(one terrain).

3.1.2 Related Work:
Contact Compliance Estimation in Robotics

For contact compliance estimation, we need to accurately model the contact
dynamics and estimate the contact parameters online. In contact modeling,
Alves et al. [53] presented a detailed overview of the types of parametric soft con-
tact models used in the literature. In compliance estimation, Schindeler et al. [54]
used a two stage polynomial identification approach to estimate the parameters
of the Hunt and Crossley’s (HC) contact model online. Differently, Azad et al. [55]
used a least square-based estimation algorithm and compared multiple contact
models (including the Kelvin-Voigt’s (KV) and the HC models). Other ap-
proaches that are not based on soft contact models use force observers [56] or
neural networks [57]. These aforementioned approaches in compliance estima-
tion were designed for robotic manipulation tasks.

To date, the only work on compliance estimation in legged locomotion was
the one by Bosworth et al. [12]. The authors presented two online (in-situ)
approaches to estimate the ground properties (stiffness and friction). The results
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Figure 3.2: An overview of the STANCE algorithm.

were promising and the approaches were validated on a quadruped robot while
hopping over rigid and soft terrain. However, the estimated stiffness showed
a trend, but was not accurate; the lab measurements of the terrain stiffness
did not match the in-situ ones. Although the estimation algorithms could be
implemented online, the robot had to stop to perform the estimation.

3.1.3 Proposed Approach and Contribution

In this work, we propose an online soft terrain adaptation algorithm called:
Soft Terrain Adaptation aNd Compliance Estimation (STANCE). As shown
in Fig. 3.2, STANCE consists of

e A Compliant Contact Consistent Whole-Body Control (c*WBC) that is con-
tact consistent to any type of terrain given the terrain compliance. This is
done by extending the state-of-the-art WBC in [1], hereafter denoted as the
Standard Whole-Body Control (sWBC). In particular, c*WBC incorporates
a soft contact model into the WBC formulation.

e A Terrain Compliance Estimator (TCE) which is an online learning algorithm
that provides the c?WBC with an estimate of the terrain compliance. It is
based on the same contact model that is incorporated in the c*WBC.

The main contribution of STANCE is that it can adapt to any type of terrain
(stiff or soft) online without pre-tuning. This is done by closing the loop of the
AWBC with the TCE. To our knowledge, this is the first implementation of
such an approach in legged locomotion.

STANCE is meant to overcome the limitations of the aforementioned ap-
proaches in soft terrain adaptation for legged robots. Compared to previ-
ous works on WBC that tested their approach only during standing [28, 45],
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we test our STANCE approach during locomotion. Compared to other ap-
proaches [46, 47] that were tested on monopods in simulation, STANCE is
implemented and tested in experiment on Hydraulically actuated Quadruped
(HyQ). Compared to previous work on soft terrain adaptation [48], STANCE
can adapt to soft terrain online and was tested on multiple terrains with dif-
ferent compliances and with transitions between them. Compared to [52], our
TCE is computationally inexpensive, which allows STANCE to run real-time
in experiments and simulations. Compared to the previous work done on com-
pliance estimation, we implemented our TCE on a legged robot which is, to
the best of our knowledge, the first experimental validation of this approach.
Differently from [12], our TCE approach could be implemented in parallel with
any gait or task. We also achieved a more accurate estimation of the terrain
compliance compared to [12].

As additional contributions, we discussed the benefits (and the limitations)
of exploiting the knowledge of the terrain in WBC based on the experience
gained during extensive experimental trials. To our knowledge, STANCE is the
first work to present legged locomotion experiments crossing multiple terrains
of different compliances.

3.2 Robot model

Consider a legged robot with n Degrees of Freedom (DoFs) and ¢ feet. The
total dimension of the feet operational space ny can be separated into stance
(nst = 3cgt) and swing feet (ngy = 3csw) where ¢y and cgy are the number of
stance and swing legs respectively. Assuming that all external forces are exerted
on the stance feet, the robot dynamics is written as

Mcom 03><3 03><n -)'C'com hcom
Osxz Mg Mpj| | wp |+ | he
Onx3 MHTJ. M; || g h;
—_——— ——
M(q) ] h(q.q)
03><1q J;com
= |03x1 | + Jst,@ Forg (3.1)
7 ] J;,j
—_—
Jst ()T
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where ¢ € SE(3) X R”" denotes the generalized robot states consisting of the
Center of Mass (CoM) position xcom € R3, the base orientation R, € SO(3),
and the joint positions g; € R". The vector ¢ = [chom wg q'jT]T e RO*" denotes
the generalized velocities consisting of the velocity of the CoM Xeom € R3, the
angular velocity of the base wp € R3, and the joint velocities g; € R". The
vector § = [xI a')z q}T]T € RO denotes the corresponding generalized
accelerations. All Cartesian vectors are expressed in the world frame Wy unless
mentioned otherwise. M e ROWXO6+1) g the inertia matrix. h € RO ig
the force vector that accounts for Coriolis, centrifugal, and gravitational forces.
7; € R" are the actuated joint torques, Fg¢ € Rt is the vector of GRFs (contact
forces). The Jacobian matrix J € R™*6+) is separated into swing Jacobian
Jow € Rw X (6+1) and stance Jacobian Jy € Rt X 6+ which can be further
expanded into Js com € R™3, Ji 9 € R™3 and Jg j € R The feet velocities
v € R™ are separated into stance vy € R™' and swing vg,y € R™v feet velocities.
Similarly, the feet accelerations v € R™ are separated into stance vy € Rt
and swing vy, € R’™v feet accelerations. The feet forces F = [Fs7tw FL1T e R™
are also separated into stance Fy; € Rt and swing Fy, € R™v feet forces. We
split the robot dynamics (3.1) into an unactuated floating base part (the first 6

rows) and an actuated part (the remaining n rows) as

M(q)g + h(q,q) = Jst,u(Q)TFgrf (3'23)
Ma(CI)C'I' + hj(q’ q) = T + Jst,j(CI)TFgrf (32b)

where M, € R0 and M, € R™5*" are sub matrices of M, h, = [hl, h}]" € RO
and h; € R" are sub vectors of &, and Js, = [Jg;com JSTt O]T. Finally, we define

the gravito-inertial wrench as Weom = Mu(q)§ + hu(q, ¢) € RS.

3.3 Standard Whole-Body Controller (sWBC)

This section summarizes the sWBC as detailed in [1]. Besides the WBC, our
locomotion framework includes a locomotion planner, state estimator and a low-
level torque controller as shown in Fig. 3.3. Given high-level user inputs, the
planner generates the desired trajectories for the CoM, trunk orientation and
swing legs, and provides them to the WBC. The state estimation provides the
WBC with the estimated states of the robot.

The objective of the sWBC is to ensure the execution of the trajectories pro-
vided by the planner while keeping the robot balanced and reasoning about the
robot’s dynamics, actuation limits and the contact constraints [1]. We denote
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3.3. Standard Whole-Body Controller (sWBC)

the execution of the trajectories provided by the planner as control tasks. These
control tasks alongside the aforementioned constraints define the WBC prob-
lem. The control problem is casted as a Whole-Body Optimization (WBOpt)
problem via a Quadratic Program (QP) which solves for the optimal generalized
accelerations and contact forces at each iteration of the control loop [26]. The
optimal solution of the WBC is then mapped into joint torques that are sent to
the low-level torque controller.

3.3.1 Control Tasks

We categorize the sWBC control tasks into: 1) a trunk task that tracks the
desired trajectories of the CoM position and trunk orientation, and 2) a swing
task that tracks the swing feet trajectories [1]. Similar to a PD+ controller
[38], both tasks are achieved by a Cartesian-based impedance controller with
a feed-forward term. The feedforward terms are added in order to improve
the tracking performance of the tasks when following the trajectories from the
planner [28, 33]. The tracking of the trunk task is obtained by the desired
wrench at the CoM Weomq € RS, This is generated by a Cartesian impedance
at the CoM, a gravity compensation term, and a feed-forward term. Similarly,
the tracking of the swing task can be obtained by the virtual force Fyyq € R™v.
This is generated by a Cartesian impedance at the swing foot and a feed-forward
term. As in [1], we can also write the swing task at the acceleration level by
defining the desired swing feet velocities Vg q € R™v as

‘."sw,d = ‘.’sw,ff + KswAXsw + DewAvgy (33)

where Kgy, Dgw € R™v*sw are positive definite PD gains, Axsy = Xswd — Xsw
€ R™v and Avgy = Vswd — Vsw € R™v are tracking errors of the swing foot
position and velocity, respectively, and Vg g is a feed-forward term.

3.3.2 Whole-Body Optimization

To accomplish the sSWBC objective (the control tasks in Section 3.3.1 and con-
straints), we formulate the WBOpt problem presented in Algorithm 3.1 and
detailed in [1].

3.3.2.1 Decision Variables

As shown in Algorithm 3.1, we choose the generalized accelerations ¢ and the

contact forces Fyy as the decision variables u = [ FgTrf]T e ROt Later
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3.3. Standard Whole-Body Controller (sWBC)

in this subsection, we will augment the vector of decision variables with a slack
term n € R™w,

3.3.2.2 Cost

The cost function (3.5) consists of two terms. The first term ensures the tracking
of the trunk task by minimizing the two-norm of the tracking error between
the actual Weom and desired Weopq CoM wrenches. The second term in (3.5)
regularizes the solution and penalizes the slack variable.

3.3.2.3 Physical Consistency

The equality constraint (3.6) enforces the physical consistency between Fy ¢ and
g by ensuring that the contact wrenches due to Fgrf will sum up to Weon,. This
is done by imposing the unactuated dynamics (3.2a) as an equality constraint.

3.3.2.4 Stance Task

To remain contact consistent, we incorporate the stance task that enforces the
stance legs to remain in contact with the terrain. Since the sWBC is assuming a
rigid terrain, the stance feet are forced to remain stationary in the world frame,
i.e., vst = Vgt = 0 (see [1]). As a result, we incorporate the rigid contact model in
the sWBC formulation as an equality constraint at the acceleration level (3.7)
in order to have a direct dependency on the decision variables. In detail, since
vt = Jstg = 0, differentiating once with respect to time yields vy = JsiG+Js1g = 0.

3.3.2.5 Friction and Normal Contact Force

The inequality constraint (3.11) enforces the friction constraints by ensuring that
the contact forces lie inside the friction cones. This is done by limiting the tan-
gential component of the GRFs Fg). The inequality constraint (3.12) enforces
constraints on the normal component of the GREs Fg . This includes the uni-
laterality constraints which encodes that the legs can only push on the ground by
setting an “almost-zero” lower bound Fi, to Fg 1. They also allow a smooth
loading/unloading of the legs, and set a varying upper bound Fpax to Fgrf .
For the detailed implementation of the inequality constraints (3.11) and (3.12),
refer to [33].
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3.3. Standard Whole-Body Controller (sWBC)

3.3.2.6 Swing Task

We implement the tracking of the swing task (in Section 3.3.1) at the acceleration
level (3.3) rather than the force level since we can express the swing feet velocities
Vew as a function of ¢ which is a decision variable, i.e., Vsw(q) = Jswd + Jsw(.
This task could be encoded as an equality constraint Vey = Vewa. Yet, it is
important to relax this hard constraint when the joint kinematic limits are
reached (see [1]). Hence, the swing task is encoded in (3.13) by an inequality
constraint that bounds the solution around the original hard constraint and a
slack term n that is penalized for its non-zero values in the cost function (3.5)
and is constrained to remain non-negative in (3.13).

3.3.2.7 Torque and Joint Limits

The torque and joint limits are enforced in the inequality constraints (3.14) and
(3.15), respectively.

3.3.2.8 Torque Mapping
The WBOpt (3.5)-(3.7), (3.11)-(3.15) generates optimal joint accelerations q;

and contact forces Fg*rf, that are mapped into optimal joint torques 7* and sent
to the low-level controller using the actuated dynamics (3.2b) as

= MyG* + hj - T} o (3.4)

3.3.3 Feedback Control

The computation of the optimal torques 7* relies on the inverse dynamics in (3.4)
which might be prone to model inaccuracies [58]. In order to tackle this issue,
the desired torques 74 sent to the lower level control could combine the optimal
torques 7" in (3.4) with a feedback controller 7g, as shown in Fig. 3.3. The
feedback controller improves the tracking performance if the dynamic model of
the robot becomes less accurate [58]. The feedback controller is a proportional-
derivative (PD) joint space impedance controller [33].

Remark 3.1 Throughout this work and similar to [1] and [26], we found it suffi-
cient to use only the inverse-dynamics term (the optimal torques ) and not the
joint feedback part. This is due to the fact that we can identify the parameters
of our dynamic model with sufficient accuracy as detailed in [59]. That said, we
carried out the simulation and experiment without any need of the feedback loop.

63



3.4. C3? Whole-Body Controller

Algorithm 3.1 Whole-Body Optimization: sWBC Vs. ¢?WBC

(Trunk Task) min Weom — Wcom,d”é + ”ulllze (35)

(Decision Variables) u=[g" FgTrf n’ €'’
s.t.:

(Physical Consistency) MG+ hy = J5 (3.6)

W Vg = S+ Tad = 0 (3.7)

(c°-Stance Task) Fyrt = K€ + Dgié (3.8)

Vst = Jstg + jstq = —¢€ (39)

€=>0 (3.10)

(Friction) |Fgrf,||| < H'Fgrf,J_l (3'11)

(Normal Contact Force) Fiin < Fguf1 < Fnax (3.12)

(Swing Task) —1 < Vgw — Vewad <7, 7120 (3.13)

(Torque Limits) Tmin < Tj < Tmax (3.14)

(Joint Limits) Gjvin < i < Gjoax (3.15)

3.4 C° Whole-Body Controller

Over soft terrain, the feet positions are non-stationary and are allowed to deform
the terrain. Thus, the rigid contact assumption of the stance task (3.7) in the
sWBC does not hold anymore and should be dropped. To be c?, the interaction
between the stance feet and the soft terrain must be governed not just by the
robot dynamics but also by the soft contact dynamics. That said, the c*WBC
extends the sWBC by: 1) modeling the soft contact dynamics and incorporating
it as a stance task similar to the control tasks in Section 3.3.1, and 2) encoding
the stance task in the WBOpt as a function of the decision variables. The
differences between the sWBC and the c?WBC are highlighted in boldface in
Algorithm 3.1.

Remark 3.2 The term contact consistent is a well-established term in the lit-
erature that was initially introduced in [60]. It implies formulating the control
structure to account for the contact with the environment. The term ¢* is an ex-
tension of the term contact consistent. Hence, ¢ implies formulating the control

structure to account for the compliant contact with the environment.
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3.4.1 c3-Stance Task

We model the soft contact dynamics with a simple explicit model (the KV
model). This consists of 3D linear springs and dampers normal and tangential
to the contact point [50]. The normal direction of this impedance emulates the
normal terrain deformation while the tangential ones emulate the shear defor-
mation. Although several models that accurately emulate contact dynamics are
available [61, 62, 53], we implemented the KV model for several reasons. First,
since the model is linear in the parameters, it fits our QP formulation. Second,
estimating the parameters of the KV model is computationally efficient. As a
result, using this model, we can run a learning algorithm online which would be
challenging if a model similar to [52] is used. For a legged robot with point-like
feet, for each stance leg i, we formulate the contact model in the world frame as

Fgrf,i = kst,ipi + dst,ipi (316>

where kg; € R¥3, dy; € R¥3, Forgi € R3, p; € R?, and p; € R? are the terrain
stiffness, the terrain damping, the GRFs, the penetration and the penetration

rate of the i-th stance leg, all expressed in the world frame, respectively (see
Fig. 3.3). We define p; and p; as

Di = Xtd,i — Xst,is Pi =0—vsi (3.17)

where xyq; € R denotes the position of the contact point of foot i at the touch-
down in the world frame. By appending all of the stance feet, the contact model
can be re-written in a compact form as

Fgrf = Kstp + Dstp = Kst(xtd - xst) = Dgtvg; (318>

where Ky € R™st and Dg € R"*"st are the block-diagonal stiffness and damp-
ing matrices of the terrain of all the stance feet, respectively, and xiq € R™* are
the touchdown positions of all the stance feet.

Similar to Section 3.3.1, we deal with the contact model (3.18) as another
WBC task (alongside the trunk and swing (3.3) tasks). We can think of (3.18)
as a desired stance task that keeps the WBC c?. This stance task is achieved by
a Cartesian impedance at the stance foot which is represented by the impedance
of the terrain (Kg, and Dg). This similarity makes us encode the contact model
in the WBOpt as a stance constraint similar to what we did for the swing task
in Section 3.3.2. Hereafter, we refer to this stance task as the c’-stance task
(see Fig. 3.3).
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3.4.2 Whole-Body Optimization Revisited

The c?-stance task is included in the WBOpt by writing the soft contact model
(3.18) as a function of the decision variables. Ideally, we can directly reformulate
(3.18) as a function of Fyrr and V. Indeed, Vg can be expressed as a function
of the joint accelerations ¢ which is a decision variable (as explained in [1]).
By numerically integrating vy (once to obtain vy and twice to obtain xg), we
can associate Fg¢ with V. This approach requires the knowledge of xiq to
compute p which might be prone to estimation errors and it requires a reset of
the integrator at every touchdown.

We choose a more convenient approach which is to add the desired foot
penetration € as an extra decision variable in the WBOpt formulation. The
difference between p and € is that p is the actual penetration due to the in-
teraction with the soft contact while € is the desired penetration in the world
frame generated from the optimization problem. Both variables imply the same
physical phenomenon (the soft contact deformation). That said, we can rewrite
Fyrf in (3.18) as a function of € and é (by numerically differentiating €) without
the previous knowledge of x¢q, which is advantageous.

To do so, € is appended to the vector of decision variables u and regularized
in (3.5). Then, we incorporate (3.18) directly as a function of Fgt and € as in the
equality constraint (3.8). We numerically differentiate € to obtain ¢ = %5
To maintain physical consistency, we need to enforce an additional constraint
between the desired penetration € and the contact acceleration (€ = —vg). This
is encoded as an equality constraint as shown in (3.9). To do so, we numerically
differentiate € twice to obtain & = 6"_252‘#. We also ensure the consistency
of the physical contact model throughout the optimization problem by ensuring
that the penetration is always positive in (3.10).

We also consider the loading and unloading phase, explained in [1] and [33],
to be terrain-aware. We tune the loading and unloading phase period 7/, for
each leg to follow the settling time of a second order system response that is a
function of the terrain compliance and the robot’s mass [63]. Hence, T}, is

kst,i

ne

Tyju = 4.6/ (3.19)

where m, is the equivalent mass felt at the robot’s feet (i.e., the weight of the
robot mpg spread across its stance feet m, = mpg/ng) and the constant in the
numerator represents a 1% steady-state error.
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Finally, the WBOpt (3.5), (3.6), (3.8)-(3.15) generates optimal joint accel-
erations ¢ and contact forces F, ., that are mapped into optimal joint torques
7 and sent to the low-level controller using the actuated part of the robot’s
dynamics as shown in (3.4). Note that similar to the sWBC, we found it suf-
ficient to use only the inverse-dynamics term (the optimal torques 7*) and not
the joint feedback part.

As explained above, adding € as a decision variable involved adding two
constraints in the optimization which increases the problem size and the com-
putation time. Yet, we are still able to run the ¢*WBC in real-time. The
advantage of our approach is that the knowledge of the touchdown position xyq
is not required. We only need the previous two time instances of the penetration
€x—1 and €;_o that we already computed in the previous control loops.

3.5 Terrain Compliance Estimation

The purpose of the TCE is to estimate online the terrain parameters (namely
K and Dg;) based on the states of the robot. It is a stand-alone algorithm
that is decoupled from the ¢c*WBC. The TCE uses the contact model (3.18).
Based on that, the current measurement of the contact states (contact status «,
GRFs Fgt, the penetration p, and the penetration rate p) of each leg i at every
time step are required. Given the contact states, we use supervised learning to
learn the terrain parameters. As shown in Fig. 3.4, the TCE consists of two
main modules: contact state estimation (Section 3.5.1) and supervised learning
(Section 3.5.2). The contact state estimation module estimates the contact
states and provides it to the supervised learning module that collects these data
and computes the estimates of the terrain parameters.

3.5.1 Contact State Estimation

The contact states are estimated solely from the current states of the robot by
the state estimator. The GRFs are estimated from the torques and the joint
states, and the penetration and its rate are estimated from the floating base
(trunk) states and the joint states.
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3.5. Terrain Compliance Estimation

3.5.1.1 GRFs Estimation

To estimate the GRF, we use actuated part of the dynamics in (3.2b) as

Farti = aiJ ;] (Maidii + hji = 7)) (3.20)

where Fgrf,i; Jj,i; Ma,ia C']'l', hj,i7 and Tji COl"l"eSpOIld to Fgrf; Jst,ja Ma, q, ]’lj, and
7; for the i-th leg, respectively. Additionally, @; is the contact status variable
that detects if there is a contact in the i-th leg or not. The contact is detected
when the GRFSs exceed a certain threshold Fy;,. Hence, @; computed along the
normal direction of the i-th leg n; as:

. T _T s L . .
o {1, if n; (Jj’i (MG + hji —7ji) > Fuin (3.21)

0, otherwise

3.5.1.2 Penetration Estimation

As shown in (3.17), we estimate the penetration and its rate using the stance
feet positions xg; and velocities vy ;, and the touchdown position xq; all in the
world frame. To estimate the feet states in the world frame, we use the forward
kinematics and the base state in the world frame. Thus, the penetration and its
rate are written as

_ W _B
Di Xtd,i — Xsti = Xtdi — Xb — Rp X (3.22)

Pi = —vsui=—vp— RyvE, — (wp x RY)xE, (3.23)

where x;, € R? and v, € R? are the base position and velocity in the world frame,

respectively. The terms xftl. and VSB“. are the stance feet position and velocity of

the i-th leg in the base frame, respectively. The terms R};V € SO(3) and wy are
the rotation matrix mapping vectors from the base frame to the world frame and
the base angular velocity, respectively. The touch down positions are obtained
using a height map.

3.56.1.3 Contact States Mapping

Since, the KV model consists of 3D linear springs and dampers, normal and
tangential to the contact point, this makes the stiffness and damping matrices
diagonal with respect to the contact frame. However, if expressed in the world
frame, the stiffness and damping matrices become dense. Thus, if we formulate
the KV model in the contact frame rather than the world frame, we estimate
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3.5. Terrain Compliance Estimation

less number of elements per matrix per leg: three elements instead of nine.
Henceforth, the KV model in the TCE should be formulated with respect to
the contact frame rather than the world frame to reduce the computational
complexity. To do so, the GRFs (3.20), the penetration (3.22) and its rate
(3.23) of the i-th leg are transformed from the world frame Wy to the contact
frame W, as (see Fig. 3.3)

FSri = Ry Fais (3.24)
pS = Rypi (3.25)
pe = Ryp; (3.26)

where the superscript o€ refers to the contact frame and RvCVi is the rotation
matrix mapping from the world Ww to the contact W¢, frames for the i-th leg.
Note that the transformation (3.26) is linear since the contact frame is fized
with respect to the world frame at the touch down position (i.e., RS} =0).

3.5.2 Supervised Learning

Considering the contact model in the contact frame and using the estimated
contact states (3.24)-(3.26), we learn the terrain parameters online via super-
vised learning. In particular, we use weighted linear least squared regression.
The algorithm is treated as a batch algorithm with m-examples such that, at
every time instant k, we gather samples from the previous m time instances and
compute the terrain parameters [64].

For the k-th time instant, of the i-th leg in the d-th direction (d € {n;, t1;, 12},
see Fig. 3.3), the terms Fé}i(k), pic’d(k), and pl.c’d(k) are estimated as shown in

Section 3.5.1 where old(k) refers to the k-th time instance of the i-th leg in the
d-th direction. That said, we construct the following objects (buffers) with size
m

Fd = [Fgff'f’l.(k) ng’fj.(k—m)]T (3.27)
Pd = [pCk) - pClk-m)] (3.28)
Pdo= [pCUk) - pClk—m)] (3.29)
Pl o= [P¢ P (3.30)

where ?;d € R™ is the GRFs buffer and Pid € R™? is the penetration, and
penetration rate buffer. Given fd and Pl.d as inputs and outputs of the learning
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3.6. Experimental Setup

algorithm respectively, we estimate the terrain impedance parameters as Il.d =

[ksctfl dsctld] € R? using the analytical solution

=@ Tweh) P wE! (3.31)

where de € R and dCd € R are the terrain stiffness and damping parameters
expressed in the contact frame. The matrix W € R™ is a weighting matrix
used to penalize the error on most recent sample compared to the less recent
ones and thus, giving more importance to the most recent samples.

All of the legs in the learning algorithm are decoupled. We found it advan-
tageous to treat each leg separately because the robot can be standing on a
different terrain at each foot.

3.5.3 Implementation Details

Algorithm 3.2 sketches the entire TCE process. To initialize the buffers, we
acquire samples when the robot is at full stance and return the first estimate of
Il.d once the buffers are full. After initialization, we acquire samples and update
the buffers only when the leg is at stance.

The buffers are continuously updated in a sliding window fashion. When a
leg finishes the swing phase and is at a new touch down, it continues to use the
previous samples from the previous stance phase. This is advantageous since it
gives a smooth transition between terrains, but it adds a delay.

Remark 3.3 Since the ¢ WBC formulation is based in the world frame, it is
essential to map the estimated stiffness and damping matrices back to the world
frame before providing them to the ¢ WBC (see Fig. 3./).

Remark 3.4 The TCE can be used with any arbitrary terrain geometry given
the terrain normal and thus RVCV". The terrain normal n; at the contact point i
can be provided by a height map that is generated via an RGBD sensor.

3.6 Experimental Setup

3.6.1 State Estimation

We implemented our approach on Hy(Q) [65] which is equipped with a variety
of sensors. Each leg contains two load-cells, one torque sensor, and three high-
resolution optical encoders. A tactical-grade Inertial Measurement Unit (IMU)
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3.6. Experimental Setup

Algorithm 3.2 Terrain Compliance Estimation

1: initialize the buffers (74 and P¢) and 1¢
2: for each iteration k do

3: for each leg i do

4: if leg is in contact (a; == 1) then (3.21)
5: for each direction d do

6: estimate Fgrf,i(k) (3.20)
7: estimate pld(k) (3.22)
8: estimate p';’(k) (3.23)
9: transform ngrf,i(k) into Fgclfi(k) (3.24)
10: transform p?(k) into pl.C’d(k) (3.25)
11: transform plfi(k) into pl.c’d(k) (3.26)
12: update buffers £ and P¢ (3.27)-(3.30)
13: solve for 1¢ (3.31)
14: end for

15: map the estimated parameters to Py

16: end if

17: end for

18: end for

(KVH 1775) is mounted on its trunk. Of particular importance to this experi-
ment is the Vicon Motion Capture System (MCS). It is a multi-camera infrared
system capable of measuring the pose of an object with high accuracy. During
experiments, an accurate and non-drifting estimate of the position of the feet
in the world frame is required to calculate the real penetration for the TCE.
Typically, Hy(Q) works independently of external sensors (e.g., MCS or GPS),
however, soft terrain presents problems for state estimators [28]. This was re-
affirmed in experiment.

The current state estimator [66] relies upon fusion of IMU and leg odome-
try data at a high frequency and uses lower frequency feedback from cameras
or lidars to correct the drift. The leg odometry makes the assumption that
the ground is rigid. On soft terrain, the estimator has difficulties in determin-
ing when a foot is in contact with the ground (i.e., is the foot in the air, or
compressing the surface?). These errors cause the leg odometry signal to drift
jeopardizing the estimation. Although, incorporating vision information could
be a possibility to correct for the drift in the estimation, improving state esti-
mation on soft terrain is an ongoing area of research and is out of the scope of
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3.6. Experimental Setup

this paper.

Despite the drifting problem, we used the current state estimator [66] in
our WBC because the planner in Fig. 3.3 has a re-planning feature that makes
our WBC robust against a drifting state estimator [40]. However, the TCE
still requires an accurate and non drifting estimate of the feet position in the
world frame. Therefore, to validate the TCE, we used an external MCS that
completely eliminates the drift problem. The MCS measures the pose of a special
marker array placed on the head of the robot. Then the position of the feet in
the world frame was calculated online by using the MCS measurement and the
forward kinematics of the robot.

3.6.2 Terrain Compliance Estimator (TCE) Settings

In this work we used a sliding window of m = 250 samples (or 1 s for a con-
trol loop running at 250 Hz). Despite the general formulation, in this paper
we estimate the terrain parameters only for the direction normal to the terrain,
and assume that the tangential directions are the same. We carried out the
simulation and experiment on a horizontal plane. Thus, the rotation matrix
Rg," is identity. Furthermore, we did not estimate the damping parameter due
to the inherent noise in the feet velocity signals that would jeopardize the esti-
mation. The damping term Dgvy in (3.18) is less dominant in computing the
GRFs compared to the stiffness term. This is because the feet velocities in the
world frame vy, are usually orders of magnitude smaller than the penetration
during stance, and the damping parameter Dy is usually orders of magnitude
smaller than the stiffness parameter as shown in [62].

3.6.3 Tuning of the Low Level Control

During experiments, we found that the low level torque loop creates system
instabilities when interacting with soft environments.

In particular, when we used the same set of (high) torque gains in the low
level control loop tuned for rigid terrain, we noticed joint instabilities when
walking over soft terrain. This is because interacting with soft terrain reduces
the stability margins of the system. Thus, keeping a high bandwidth in the inner
torque loop given the reduced stability margin will cause system instability. In
our previous work [67], we experimentally validated that increasing the torque
gain of the inner loop can indeed cause system instabilities. In fact, this is a well
know issue in haptics [68]. As a result, reducing the bandwidth by decreasing the
torque gains in the inner torque loop was necessary to address these instabilities.
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3.7. Results

Our control design is a nested architecture consisting of the WBC and the
low level torque control in which, both control loops contribute to the system
stability [67, 69]. Over soft terrain, the dynamics of the environment also plays
a role and must be considered in analyzing the stability of the system. That
said, there is a nontrivial relationship between soft terrain and the stability of
a nested control loop architecture, and a formal and thorough analysis is an
ongoing work.

3.7 Results

In this section, we evaluate the proposed approach on Hy() in simulation and
experiment. We compare three approaches: the sWBC which is the baseline,
the cWBC which is our proposed WBC without the TCE, and STANCE which
incorporates both the c>WBC and TCE. We show the extent of improvement
given by the ¢c>WBC controller with respect to the sWBC as well as the im-
portance of the TCE during locomotion over multiple terrains with different
compliances. We set the same parameters and gains throughout the entire sim-
ulations and experiments, unless mentioned otherwise. The results are shown
in the accompanying video'.

3.7.1 Simulations

To render soft terrain in simulation, we used the Open Dynamics Engine (ODE)
physics engine [70]. We used ODE because it is easily integrable with our
framework, and it is numerically fast and stable for stiff and soft contacts [71].
Moreover, ODE can render soft contacts that emulates physical parameters (us-
ing the ST units N/m and Ns/m for springs and dampers, respectively) unlike
other engines that uses non-physical ones [72]. ODE’s implicit solver uses lin-
ear springs and dampers for their soft constraints which fits perfectly with our
contact model (3.18). In this way, we have a controlled simulation environment
where we can emulate any terrain compliance by manipulating its stiffness K;
and damping D, parameters similar to our contact model. Throughout the sim-
ulation, we use four types of terrains with the following parameters: soft Tj
(K; = 3500 N/m), moderate T> (K; = 8000 N/m), stiff T3 (K; = 10000 N/m), and
rigid Ty (K; = 2 x 10% N/m) all with the same damping (D, = 400 Ns/m).

!Link: https://youtu.be/0OBI4581DFjY
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3.7. Results

Table 3.1
Mean Absolute Tracking Error (MAE) [N] of the GRFs in Simulation using sWBC,
c*WBC and STANCE over Multiple Terrains.

Terrain sWBC ¢WBC STANCE

Soft 7.7261 7.4419 6.3547
Moderate 8.0594  7.4585 7.9889

Rigid 4.889 6.6523 5.128

3.7.1.1 Locomotion over Multiple Terrains

We evaluate the three approaches with the robot walking at 0.05 m/s over the
terrains: Ty (soft), To (moderate), and Ty (rigid). We provided the c*WBC with
the terrain parameters of the moderate terrain T for all the three simulations.
We do that in order to test the performance of c*WBC if given the real terrain
parameters (in case of Tp) or inaccurate parameters (in case of 77 and Ty). In
this simulation, we compare the actual values of Fy,f | against the optimal values
Fgrf, | (solution of the WBOpt) as well as the actual penetration p against the
desired penetration € of the Left-Front (LF) leg. We have omitted the other
three feet for space as all four legs have the same performance. The results are
shown in Fig. 3.5. The Mean Absolute Tracking Error (MAE) of the GRFs in
these simulations are presented in Table 3.1. The MAE of the GRFs is defined
ast MAE = £ [ |F — F, |d1.

Fig. 3.5a captures the effect of the three approaches on the GRFs over soft
terrain. We can see that a WBC based on a rigid contact assumption (sWBC)
assumes that it can achieve an infinite bandwidth from the terrain and thus
supplying an instantaneous change in the GRFSs as highlighted by the red ellipses
in Fig. 3.5a. On the other hand, STANCE and ¢*WBC were both capable of
attenuating this effect as highlighted by the green ellipses. For the reasons
explained earlier in this paper and in [48], instantaneous changes in the GRFs
are undesirable over soft terrain. This resulted in an improvement in the tracking
of the GRFs in STANCE and ¢c?WBC compared to sWBC as shown in Table 3.1.
Moreover, by comparing c?WBC and STANCE over soft terrain Tj, we can see
that the shape of the GRFs did not differ. However, the tracking of the GRFs in
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3.7. Results

STANCE is better than the ¢c>WBC. This shows that suppling the cWBC with
the incorrect values of the terrain parameters deteriorates the GRFs tracking
performance. Fig. 3.5b shows the GRFs on a moderate terrain. Since the c>*WBC
is provided with the exact terrain parameters of Ty, we can perceive the c>WBC
as STANCE with a perfect TCE on moderate terrain. As a result, Table 3.1
shows that in this set of simulations, ¢c*WBC outperformed STANCE in the
GRFs tracking. This shows that a more accurate TCE can result in a better
GRFs tracking. Additionally, Fig. 3.5¢ shows the GRFs on rigid terrain. We can
see that the sSWBC resulted in a typical (desired) shape of the GRFs for a crawl
motion in rigid terrain [40]. STANCE showed a shape of the GRFs similar to
the sWBC which is expected since the TCE provided STANCE with parameters
similar to the rigid terrain. However, for c*WBC, the GRFs shape did not change
compared to the other three terrains. As shown in Table 3.1, the best tracking to
the GRFs was by the sWBC, which was expected since the sSWBC was designed
for rigid terrain. However, sWBC was only slightly better than STANCE due
to small estimation errors from the TCE.

Fig. 3.5a-c show the superiority of STANCE compared to sWBC and ¢*WBC.
STANCE adapted to the three terrains by estimating their parameters and sup-
plying them to the WBC. This resulted in changing the shape of the GRFs ac-
cordingly that improved the tracking of the GRFs. Unlike STANCE, the sWBC
and the ¢c>WBC both are contact consistent for only one type of terrain which
resulted in a deterioration of the GRFs tracking over the other types of terrains.
The advantages of STANCE compared to sWBC and ¢*WBC are also shown in
Fig. 3.5d-f. Since the sWBC is always assuming a rigid contact, the penetration
€ was always zero throughout the three terrains. Similarly, since the ¢c?WBC
alone is aware only of one type of terrain, it is always assuming the same contact
model, in which the desired penetration € was similar throughout the three ter-
rains. STANCE, however, was capable of predicting the penetration correctly
for all the three terrains.

In general, even if the contact model is for soft contacts, STANCE was capa-
ble of correctly predicting the penetration of the robot even in rigid terrain (zero
penetration). This resulted in STANCE adapting to rigid, soft and moderate
terrains by means of adapting the GRFs and correctly predicting the penetra-
tion.

3.7.1.2 Longitudinal Transition Between Multiple Terrains

We show the adaptation of STANCE when walking and transitioning between
multiple terrains. We test the accuracy of the TCE and the effect of closing the

7



3.7. Results
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Figure 3.6: Simulation. Traversing multiple terrains of different compliances (7y,
Ty, T, T3, Ty). Top: Tracking of the desired terrain penetration of the LF leg in the
xz-plane. Bottom: Estimated terrain stiffness of the LF leg. For readability purposes
we only plot estimated values less than 2x10%. The green shaded areas highlight the
overlap between terrains that results in higher estimated stiffness (black ellipses).

loop of the c?WBC with the TCE on the feet trajectories and terrain penetration.
In this simulation, Hy(Q) is traversing five different terrains, starting and ending
with a rigid terrain: Ty, Ti, To, To, T4. The results are presented in Fig. 3.6.
The top plot presents the actual foot position against the desired penetration €
of the LF leg in the xz-plane of the world frame. The origin of the z-direction
(normal direction) is the uncompressed terrain height. Thus, trajectories below
zero represent the penetration of the LF leg. The bottom plot shows the history
of the estimated terrain stiffness of the TCE of the LF leg. Table 3.2 reports
the mean, standard deviation, and percentage error’ of the estimated terrain
stiffness of the LF leg against the ground truth value set in ODE. The table
shows that the TCE had an estimation accuracy below 2% for the soft terrains
T, T> and T3. However, the estimation accuracy of the rigid terrain was lower
than that of the soft terrains. This is expected since on a rigid terrain, the
penetrations are (almost) zero. Thus, a small inaccurate penetration estimation
due to any model errors could result in a lower estimation accuracy. Apart
from the rigid case, the standard deviation is always below 6% of the ground
truth value. Fig. 3.6 shows that STANCE is always c?, the actual foot position
is always consistent with the desired penetration during stance. We can see
that, when Hy(Q) is standing over rigid terrain, both the actual foot position

r = IEstimate—Actuall % 100

2 The percentage error is defined as: % Erro Aol
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Table 3.2
Mean p [N/m], Standard Deviation o~ [N/m], and Percentage Error of the
Estimated Terrain Stiffness of the LF Leg in Simulation.

Terrain  Actual Stiffness Mean u + STD o % Error

T 3500 3530 + 200 0.9%
Ip) 8000 8110 + 400 1.4%
T3 10000 10110 + 400 1.1%
1, 2000000 2240000 £ 740000 12%

and desired penetration are zero. As Hy() walks, over the soft terrains, the
penetration is highest in the softest terrain and smallest in the stiffest terrain.

In the simulation environment, we overlapped the terrains to prevent the
feet from getting stuck between them. This overlap created a transition (high-
lighted in green in the figure) which resulted in a stiffer terrain. The overlap
was captured by the TCE and resulted in a slight increase in the estimated
parameters as highlighted by the two ellipses in the lower plot. We also noticed
a lag in estimation, due to a filtering effect, since the TCE is using the most
recent m-samples. As highlighted by the black box in Fig. 3.6, Hy(Q) was on rigid
terrain (actual penetration is zero) while STANCE still perceived it as being on
T3 (desired penetration is non-zero).

3.7.1.3 Aggressive trunk maneuvers

We tested sWBC and STANCE under aggressive trunk maneuvers by command-
ing desired sinusoidal trajectories at the robot’s height (0.05 m amplitude and
1.8 Hz frequency) and at roll orientation (0.5 rad amplitude and 1.5 Hz fre-
quency) over the soft terrain 77. The results are shown in Fig. 3.7. The left plot
shows a top view of the actual front feet (LF and Right-Front (RF)) positions
in the world frame. The right plot shows a side view of the actual LF foot po-
sition in the world frame. We notice that the feet of Hy() are always in contact
with the terrain in STANCE which is expected since STANCE is c?. Unlike
STANCE, the feet did not remain in contact with the terrain in the sWBC.
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Figure 3.7: Simulation. Comparing sWBC and STANCE under aggressive trunk
maneuvers. Left: Top view of the front feet (RF and LF) positions. Right: Side
view of the LF position.

This is clearly seen in Fig. 3.7 where Hy() lost contact multiple times. This
resulted in the robot falling over in the sWBC case as shown in the video.

3.7.1.4 Speed Test

We carried out a simulation where Hy() walks over soft terrain Ty, starting with
a forward velocity of 0.05 m/s until it reaches 0.3 m/s with an acceleration
of 0.005 m/s?. In this simulation, we compare STANCE against the sWBC.
Fig. 3.8a and Fig. 3.8b show the actual trajectories of the RF and Left-Hind
(LH) legs in the world frame, respectively. Fig. 3.8c shows a closeup section of
the RF leg’s trajectory. The simulation shows that STANCE was c? over the
entire simulation while the sSWBC was not.

In particular, STANCE was able to remain in contact with the terrain that
allowed Hy() to start the swing phase directly from the terrain height. Un-
like STANCE, the sWBC is not terrain aware and did not remain c¢® which
resulted in starting the swing trajectory while still being inside the deformed
terrain. This is highlighted by the two ellipses in the right plot. Additionally,
the compliance contact consistency property of STANCE enabled the robot to
maintain the desired step clearance (i.e., achieving the desired step height of
0.14 cm) compared to sWBC. Most importantly, as shown in the accompanying
video, the sSWBC failed to complete the simulation and could not achieve the
final desired forward velocity; It fell at a speed of 0.21 m/s. Note that both
approaches could reach higher velocities with a more dynamic gait (trot). How-
ever, this simulation is not focusing on analyzing the maximum speed that the
two approaches can reach but rather the differences between these approaches
at a higher crawl speeds.
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(a)
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Figure 3.8: Simulation. Speed test. Increasing the desired forward velocity
from 0.05 to 0.3 m/s. Left: Side view of the RF (a) and LH (b) positions.
Right: (c) Closeup section of the top left plot. The green lines are the desired
step height. The black dashed lines are the terrain height.

6 >< 103 T T T T =
--sWBC 0.05m/s __ --sWBC0.15m/s __—-sWBC 0.25ms |

™. [ —STANCE 0.05m/s —STANCE 0.15m/s —STANCE 0.25m/s |
+ 4 [ ——
=
=
Ry 2
~

0

Figure 3.9: Simulation. Power consumption comparison between sWBC and
STANCE with different forward velocities (0.05 m/s, 0.15 m/s and 0.25 m/s).
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Table 3.3
Mean Absolute Tracking Error (MAE) [N] of the GRFs using sWBC, c*WBC and
STANCE under Different Sets of Experiments.

Description sWBC c*WBC STANCE

Soft Terrain (Sec. 3.7.2.1) 73.9042 68.5581  61.8207
Longitudinal Trans. (Sec. 3.7.2.2) 70.5276 64.2636  60.6285

Lateral Trans. (Sec. 3.7.2.3) 73.0766 - 53.0107

3.7.1.5 Power Test

In this test, we compare the power consumption using STANCE and sWBC
on Hy(Q) during walking over the soft terrain T at different forward veloci-
ties (0.05 m/s, 0.15 m/s and 0.25 m/s). Fig. 3.9 presents the energy plots of
STANCE and sWBC. The plot shows that STANCE requires less power than
the sSWBC because it knows how the terrain will deform. STANCE exploits the
terrain interaction to achieve the motion. The difference in consumed energy is
negligible at 0.05 m/s but becomes significant at higher speeds.

3.7.2 Experiment

We validated the simulation presented in Section 3.7.1 on the real platform. We
analyzed sWBC, ¢*WBC (with fixed terrain parameters) and STANCE as well
as the performance of the TCE module itself.

A foam block of 160 cm X 120 cm X 20 cm was selected as a soft terrain for
these experiments. To obtain a ground truth of the foam stiffness, we carried out
indentation tests on a 50 cm? sample of the foam with a stress-strain machine
that covers the range of penetration of interest for our robot (below 0.15 cm).
The indentation test showed a softening behavior of the foam with an average
stiffness of 2400 N/m. The MAE of the GRFs of the upcoming experiments are
shown in Table 3.3.
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Figure 3.10: Experiment. Comparing sWBC, c?WBC and STANCE over a soft
foam block (K; = 2400 N/m). Top: Tracking of the GRFs of the RF leg. Bottom:
Tracking of the foot penetration. The gray shaded areas represent the uncertainty
of the measurements.

3.7.2.1 Locomotion over Soft Terrain

In this experiment, Hy() is walking over the foam with a forward velocity of
0.07 m/s using the three approaches. The results are presented in Fig. 3.10
that shows the actual and desired Fg, and penetration of the RF leg. The
shaded gray area in the lower plots of Fig. 3.10 represents the uncertainty in
the estimation of the foot position (see Section 3.6.1). In these experiments,
all three approaches performed well; none of them failed. However, the shape
of GRFs were different within the three approaches. As in Section 3.7.1.1,
since sSWBC is rigid contact consistent, the desired GRFs were designed for
rigid contacts. Unlike sWBC, STANCE is ¢, which was capable of changing
the shape of the GRFs. This is highlighted in Table 3.3 in which STANCE
outperformed sWBC in the tracking of the GRFs.

In simulation, when we provided the ¢c>WBC with the true value of the stiff-
ness, the MAE of the GRFs was better. However, in this experiment, providing
the value obtained from the indentation tests to the c*WBC resulted in a worse
GRFs MAE. This outperformance of STANCE compared to the c*WBC in this
experiment could be because of the TCE. To clarify, the actual terrain compli-
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Table 3.4
Mean p [N/m], Standard Deviation o~ [N/m], and Percentage Error of the
Estimated Terrain Stiffness of the Four Legs in Experiment over Soft Terrain
(2400 N/m).

Leg Mean u + STD o % Error

LF 2186 + 166 9%
RF 2731 £ 173 14%
LH 2368 + 317 1%
RF 2078 + 331 13%

ances are not constant, but since the TCE is online, it is able to capture these
changes in the terrain compliances as well as model errors. As shown in the
accompanying video, STANCE had a smoother transition during crawling com-
pared to sWBC. We found the robot transitioning from swing to stance more
aggressively in sWBC than STANCE. Such smooth behavior was also noticed
in [48].

Table 3.4 shows the mean, standard deviation, and percentage error of the
estimated terrain stiffness of all the four legs against the ground truth value
(2400 N/m) obtained from the indentation tests. The table shows that the ac-
curacy of the TCE in simulation is better than in experiments. This is expected
since in simulation, the TCE has a perfect knowledge of the feet penetration.
However, the accuracy of our TCE is better compared to [12] in which the per-
centage error exceeded 50% (the actual stiffness was more than double that of
the estimated one in [12]).

3.7.2.2 Longitudinal Transition Between Multiple Terrains

Similar to Section 3.7.1.2, we compare the three approaches while transitioning
between the foam block and a rigid pallet. We added a pad between between
the two terrains to avoid the foot getting stuck (see Fig. 3.1a). Fig. 3.11a-c show
the actual position and the desired penetration of the RF leg in the xz-plane
for the three approaches. Fig. 3.11d shows the estimated terrain stiffness of the
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Figure 3.11: Experiment. Longitudinal transition from soft to rigid terrain. The
first three plots show the tracking of the desired foot penetration of RF leg using
the three approaches (the sWBC, c>WBC with fixed terrain stiffness and STANCE.
The fourth plot shows the stiffness estimated by the TCE for the four legs.

TCE for all four feet.

From Fig. 3.11a-b we see that both sWBC and ¢*WBC did not adapt to ter-
rain changes. Since both controllers are designed for a specific constant terrain,
the desired penetration did not change from soft to rigid. In the sWBC, there
is no tracking of the penetration, and in the c?WBC, the tracking of the pene-
tration is good only when the leg is on the foam where the stiffness is consistent
to the one used in the controller. On the other hand, as shown in Fig. 3.11c-d,
STANCE changes its parameters when facing a different terrain; it was capable
of adapting its desired penetration to the type of terrain. In fact, the desired
penetration was non-zero on soft terrain and was almost zero on rigid terrain.
This again resulted in STANCE achieving the best GRFs tracking as shown in
Table 3.3.

Fig. 3.11d shows the importance of having a TCE for each leg. The estimated
terrain parameters are different between the legs where the hind legs are on the
foam while the rigid ones transitioning from foam to rigid. The figure also shows
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Figure 3.12: Experiment. The sWBC and STANCE under disturbances over soft
terrain. Top: The actual and desired Fy, in sSWBC and STANCE, respectively.

Bottom: The actual torque and torque limits of the Knee Flexion-Extension (KFE)
joint of the RF leg in sWBC and STANCE, respectively.

that the LF leg walked over the rigid terrain before the RF and that the TCE
captures the intermediate stiffness estimation due to the rubber pad (see video).

3.7.2.3 Lateral Transition Between Multiple Terrains

Unlike the previous experiment, we set the foam and the pallet laterally as
shown in Fig. 3.1c and in the accompanying video. This is a more challenging
scenario for stability reasons. In particular, the robot must extend its leg further
in the soft terrain maintain the trunk’s balance. Consequently, since the width
of HyQ’s torso is smaller than its length, the Zero Moment Point (ZMP) is
more likely to get out of the support polygon. The GRFs MAE in Table 3.3
show that STANCE can outperform sWBC during both longitudinal and lateral
transitions.

3.7.2.4 External Disturbances over Soft Terrain

In this experiment, we test the sSWBC and STANCE when the user applies a
disturbance on Hy(). The results are shown in Fig. 3.12. The top plots show the
actual and desired Fg¢, in sWBC and STANCE, respectively. The bottom plots
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Table 3.5
Mean p [N/m] and Standard Deviation o= [N/m] of the Estimated Terrain Stiffness
of the Four Legs in Experiments (see Fig. 3.1b).

Leg Mean u + STD o

LF 448400 + 165100

RF 55200 + 48400

LH 2645000 + 336000

RH 1393000 + 442000

show the actual torque and torque limits of the Knee Flexion-Extension (KFE)
joint of the RF leg in sWBC and STANCE, respectively. In the accompanying
video, we can qualitatively see that with STANCE, the feet of Hy() keep moving
to remain ¢ with the terrain. On the other hand, the sWBC kept its feet
stationary. This behavior was also reported by [28].

Most importantly, we noticed that Hy() reaches the torque limits in the
sWBC as shown in Fig. 3.12. However, in STANCE, since the robot was con-
stantly moving its feet, hence redistributing its forces, the torque limits were not
reached. This behavior was also reflected on the GRFs in which, the GRFs were
resonating in the sWBC as highlighted by the ellipse in Fig. 3.12.

3.7.2.5 TCE’s Performance over Multiple Terrains

We analyze the performance of the TCE on Hy() over multiple terrains with
various softnesses. The softness of the four used terrains are shown in Fig. 3.1b.
The estimated stiffness (mean and standard deviation) under each leg is shown
in Table 3.5. As shown in the table, the robot can differentiate between the
types of terrain. Although we did not measure the true stiffness value of these
terrains, we can observe their softness in the video and Fig. 3.1b and compare
it to the values in Table 3.5.
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3.7.3 Computational Analysis

STANCE is running online which means that we can estimate the terrain compli-
ance (using the TCE) continuously while walking, and run the entire framework
without breaking real-time requirements. We validated the first argument by
showing that indeed the TCE can continuously estimate the terrain compliance.
Hereafter, we validate the second argument by analyzing the computational
complexity of STANCE and compare it against the sWBC. Since our WBC
framework is running at 250 Hz, it is essential that the computation does not
exceed the 4 ms time frame. Hence, we conducted a simulation in which we
calculated the time taken to process the entire framework without the lower
level control (ie., the state estimator, the planner and the WBC) that is run-
ning on a different real-time thread at 1 kHz. We compared the computation
time on an Intel Core i7 quad core CPU in the case of STANCE (the ¢*WBC
and the TCE) and the sWBC. We used the same parameters and gains as in
Section 3.7.1.1. The results show that the average processing time taken was
0.68 ms and 0.74 ms for the sSWBC and STANCE respectively. In both cases,
the maximum computation time was always below 2 ms.

3.8 Conclusions

We presented a soft terrain adaptation algorithm called STANCE: Soft Terrain
Adaptation aNd Compliance Estimation. STANCE can adapt online to any
type of terrain compliance (stiff or rigid). STANCE consists of two main mod-
ules: a compliant contact consistent whole-body controller (c*WBC) and a ter-
rain compliance estimator (TCE). The ¢c?WBC extends our previously imple-
mented WBC (sWBC) [1], such that it is contact consistent to any type of
compliant terrain given the terrain parameters. The TCE estimates online the
terrain compliance and closes the loop with the ¢c?WBC. Unlike previous works
on WBC, STANCE does not assume that the ground is rigid. Stance is com-
putationally lightweight and it overcomes the limitations of the previous state
of the art approaches. As a result, STANCE can efficiently traverse multiple
terrains with different compliances. We validated STANCE on our quadruped
robot Hy() over multiple terrains of different stiffness in simulation and exper-
iment. This, to the best of the authors’ knowledge, is the first experimental
validation on a legged robot of closing the loop with a terrain estimator.
Incorporating the terrain knowledge makes STANCE c®. This means that
STANCE is able to generate smooth GRFs that are physically consistent with

88



3.8. Conclusions

the terrain, and continuously adapt the robot’s feet to remain in contact with the
terrain. As a result, the tracking error of the GRFs and the power consumption
were reduced, and the impact during contact interaction was attenuated. Fur-
thermore, STANCE is more robust in challenging scenarios. As demonstrated,
STANCE made it possible to perform aggressive maneuvers and walk at high
walking speeds over soft terrain compared to the state of the art sWBC. In the
standard case, the contact is lost because the motion of the terrain is not taken
into account. On the other hand, there are minor differences in performance
between STANCE and the sWBC for less dynamic motions.

STANCE can efficiently transition between multiple terrains with different
compliances, and each leg was able to independently sense and adapt to the
change in terrain compliance. We also tested the capability of the TCE in
discriminating between different terrains. The insights gained in simulation
have been confirmed in experiment.

In future works, we plan to implement an algorithm to improve the TCE.
In particular, we plan on using onboard sensors, such as a camera, instead of
relying on the external measurements from an MCS. We also plan to explore
other non-linear contact models in the TCE and the cWBC.
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On State Estimation
for Legged Locomotion over Soft Terrain

(© 2021 IEEE. Reprinted, with permission. S. Fahmi, G. Fink and C. Sem-
ini, "On State Estimation for Legged Locomotion over Soft Terrain," in
IEEE Sensors Letters (L-SENS), vol. 5, no. 1, pp. 1-4, January 2021,
doi: 10.1109/LSENS.2021.3049954.

Abstract. Locomotion over soft terrain remains a challenging problem for legged
robots. Most of the work done on state estimation for legged robots is designed
for rigid contacts, and does not take into account the physical parameters of
the terrain. That said, this letter answers the following questions: how and
why does soft terrain affect state estimation for legged robots? To do so, we
utilized a state estimator that fuses IMU measurements with leg odometry that
is designed with rigid contact assumptions. We experimentally validated the
state estimator with the Hy(Q robot trotting over both soft and rigid terrain.
We demonstrate that soft terrain negatively affects state estimation for legged
robots, and that the state estimates have a noticeable drift over soft terrain
compared to rigid terrain.
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4.1. Introduction

4.1 Introduction

Quadruped robots are advancing towards being fully autonomous as can be
seen by their recent development in research and industry, and their remarkable
agile capabilities [73, 74, 75]. This demands quadruped robots to be robust
while traversing a wide variety of unexplored complex non-flat terrain. The
terrain may not just vary in geometry, but also in its physical properties such
as terrain impedance or friction. Reliable state estimation is a major aspect for
the success of the deployment of quadruped robots because most locomotion
planners and control strategies rely on an accurate estimate of the pose and
velocity of the robot. Furthermore, reliable state estimation is essential, not only
for locomotion (low-level state estimation), but also for autonomous navigation
and inspection tasks that are emerging applications for quadruped robots (task-
level state estimation).

To date, most of the work done on state estimation for legged robots are
based on filters that fuse multiple sensor modalities. These sensor modalities
mainly include high frequency inertial measurements and kinematic measure-
ments (e.g., leg odometry), as well as other low frequency modalities (e.g., cam-
eras and lidars) to correct the drift.

For instance, an Extended Kalman Filter (EKF)-based sensor fusion algo-
rithm has been proposed by [66] that fuses Inertial Measurement Unit (IMU)
measurements, leg odometry, stereo vision, and lidar. In [76], a similar algo-
rithm has been proposed that fuses IMU measurements, leg odometry, stereo
vision, and GPS. In [74], a nonlinear observer that fuses IMU measurements
and leg odometry has been proposed. In [77], a state estimator fuses a Globally
Exponentially Stable (GES) nonlinear attitude observer based on IMU mea-
surements with leg odometry to provide bounded velocity estimates. The global
stability is important for cases when the robot may have fallen over whereas
typical EKF-based works may diverge. The bounded velocity estimates help
to decrease drift in the unobservable position estimates. Finally, an approach
similar to [77] has been proposed in [78]. This approach proposed an invariant
EKF-based sensor fusion algorithm that includes IMU measurements, contact
sensor dynamics, and leg odometry.

The aforementioned state estimators are shown to be reliable on stiff terrain.
Yet, over soft terrain (as shown in Fig. 4.1), the performance of these state
estimators starts to decline. Over soft terrain, the state estimator has difficulties
determining when a foot is in contact with the ground. For instance, the state
estimator has difficulties determining if the foot is in the air, if the foot is
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Figure 4.1: HyQ traversing multiple terrains of different compliances.

applying more force than the terrain (terrain compression), if the terrain itself
is applying more force than the foot (terrain expansion), or if the foot and the
terrain are applying the same force (rigid terrain). This results in a large position
estimate drift, and it was reported in our previous work [2] where we noted that
we encountered difficulties because of state estimation over soft terrain. Apart
from our previous work, other works also mention that state estimation over
soft terrain is a challenging task, e.g., [79, 45]. Yet, to the authors’ knowledge,
literature has not yet discussed the question on how soft terrain affects the state
estimation.

The contributions of this work are the experimental analysis and formal
study on: the effects of soft terrain on state estimation, the reasons behind these
effects, and simple ways to improve state estimation. This letter is building upon
our previous work on soft terrain adaptation [2] and on state estimation [77].

The rest of this letter is organized as follows: Section 4.2 describes the robot
model, the onboard sensors, and how to estimate the Ground Reaction Forces
(GRFs) acting on the robot. Section 4.3 explains the state estimator used in this
letter, and how to estimate the base velocity of the robot using leg odometry.
Section 4.4 details the results of our experiment and demonstrates how soft
terrain affects state estimation. Finally, Section 4.5 presents our conclusions.
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4.2 Modeling, Sensing, and Estimating

In this letter, we consider the quadruped robot HyQ [65] shown in Fig. 4.1. Each
leg has three actuated joints. Despite experimenting on a specific platform,
the problem is generic in nature and it applies equally to any legged robot.
Furthermore, by using the 90 kg HyQ robot, a heavy and strong platform, we
are exciting more dynamics.

4.2.1 Notations

We introduce the following reference frames: the body frame $ which is located
at the geometric center of the trunk (robot torso), and the navigation frame
N which is assumed inertial (world frame). The basis of the body frame are
orientated forward, left, and up. To simplify notation, the IMU is located such
that the accelerometer measurements are directly measured in 8.

4.2.2 Kinematics and Dynamics

Assuming that all of the external forces are exerted on the feet, the dynamics
of the robot is
Mx)x+h(X,x)=T (4.1)

where x = [xT n’ qT]T € R8 is the generalized robot states, x € R!® is the
corresponding generalized velocities, X € R® is the corresponding generalized
accelerations, x € R? is the position of the base, 7 € R3 is the attitude of the
base, ¢ € R'? is the vector of joint angles of the robot, M € R¥*18 is the joint-
space inertia matrix, & is the vector of Coriolis, centrifugal and gravity forces,
T = ([0 TT]T — JF) € R'®, 7 € R is the vector of actuated joint torques,
J € R!8¥12 ig the floating base Jacobian, and F € R'? is the vector of external
forces (i.e., GRFSs).
We solve for the GRFs Fy of each leg € using the actuated part of the dynamics
in (4.1).
Fp = —ae(J{ (q0) ™ (e = he(3e, X¢)) (4.2)

F; € R? € F is the GRFs for € in B, J; € R¥3 ¢ J is the foot Jacobian of ¢,
1, € R? C 7 is the vector of joint torques of €, hy € R? C h is the vector of cen-
trifugal, Coriolis, gravity torques of € in 8, and a, € {0, 1} selects if the foot is
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on the ground or not. A threshold of F; is typically used to calculate ay.

(4.3)

0 otherwise

B {1 D) (e = he)l| > €
Qp =

where € > 0 € R is the threshold.

Assumption 4.1 There exists a force threshold € that determines if the foot is
in contact with the environment.

The translational and rotational kinematics, and the translational dynamics
of the robot as a single rigid body in N are

t=v Vi=a"+g" R = RZS(wb) (4.4)

where x" € R3, v € R?, a" € R3 are the position, velocity, and acceleration of
the base in N, respectively, R € SO(3) is the rotation matrix from 8 to N,
and w” is the angular velocity of the base in 8. The skew symmetric matrix
function is S().

4.2.3 Sensors

The modeling assumes that the quadruped robot is equipped with a six-axis
IMU on the trunk (3 Degrees of Freedom (DoFs) gyroscope and 3 DokFs ac-
celerometer), and that every joint contains an encoder and a torque sensor. The
accelerometer measures specific force f? € R3
fr=a"+g" (4.5)
where a? € R3 is the acceleration of the body in 8 and g” € R3 is the acceleration
due to gravity in 8. The gyroscope directly measures angular velocity w” € R3
in 8. The encoders are used to measure the joint position ¢; € R and joint speed
gi € R. The pose of each joint (i.e., the forward kinematics) is assumed to be
exactly known. The torque sensors in the joints directly measure torque 7; € R.
The measured values of all of the sensors differ from the theoretical values in
that they contain a bias and noise: X = x + by + n, where x, b,, and n, are the
measured value, bias, and noise of x, respectively. All of the biases are assumed
to be constant or slowly time-varying, and all of the noise variables have zero
mean and a Gaussian distribution.
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4.3 State Estimator

To compare the effect of different terrains, we use the state-of-the-art low-level
state estimator from [77]. It includes input from three proprioceptive sensors:
an IMU, encoders, and torque sensors. For reliability and speed no exteroceptive
sensors are used. The state estimator consists of three major components: an
attitude observer, leg odometry, and a sensor fusion algorithm.

4.3.1 Non-linear Attitude Observer

Typically in the quadruped robot literature an EKF is used for attitude es-
timation, e.g., [66, 76, 80]. However, our attitude observer [77] is GES, and it
consists of a Non-Linear Observer (NLO) [81] and an eXogeneous Kalman Filter
(XKF) [82]. The NLO is

Ry = RIS(w” - %) + 0K, Jy(R})
b= Proj (Eb, —k vex (P (IQZTKsz(IéZ))))

N

(4.6)

k
A A T
TR = (0 = Riyh)y!
j=1

where K, € R>3 is a symmetric positive-definite gain matrix, k > 0 € R is a
saturates every element of X to =1, Proj is a parameter projection that ensures
that ||l3|| < My, My > 0 € R is a constant known upper bound on the gyro bias,
P(X) = %(X + XT) for any square matrix X, and Jy is the stabilizing injection
term. The observer is GES for all initial conditions assuming there exists k > 1
> 0 where i,j € {1,---,k}.
Furthermore, if there is only one measurement the observer is still GES if the
following Persistency of Excitation (PE) condition holds: if there exist constants

T >0€Rand y > 0 € R such that, for all r > 0, f[HT y’l’(T)y’l’(T)T dt > yI holds
then y! is PE. See [81] for proof.

The XKF [82] is similar to an EKF in that it linearizes a nonlinear model
about an estimate of the state and then applies the typical Linear Time-Varying
(LTV) Kalman filter to the linearized model. If the estimate is close to the true
state then the filter is near-optimal. However, if the estimate is not close to the
true state, the filter can quickly diverge. To overcome this problem, the XKF
linearizes about a globally stable exogenous signal from a NLO. The cascaded

scalar gain, o > 1 € R is a scaling factor, IQZS = sat(lég), the function sat(X)

non-collinear vector measurements, i.e., )yl” X y;‘
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structure maintains the global stability properties from the NLO and the near-
optimal properties from the Kalman filter. The observer is

Xx=fi+C(x—%)+K(z—hy—H(% - %))
P=CP+PCl —KHP +Q (4.7)
K =PH R

where C = 0 f/0x|;,, H = 0h,/dx|z,, X € R" is the bounded estimate of x
from the globally stable NLO. See [82] for the stability proof.

4.3.2 Leg Odometry

Leg odometry computes the overall base velocity %? of the robot by combining
the contribution of each foot velocity )'cé’ . Each leg ¢ only contributes to the leg
odometry when it is in contact ay. Thus, we calculate the overall base velocity
b

x” as

. . . 1 .
xf,’ = —ay (J[(C][)q - wh x xf) i = ﬂ_c Z xé? (4.8)
5T
where ng = ) ay is the number of stance legs.
¢

Assumption 4.2 The leg odometry assumes that the robot is always in rigid
contact with the terrain. This implies that the stance feet do not move in N,
there is no slippage, the terrain does not expand or compress, and the robot does
not jump or fly.

4.3.3 Sensor Fusion

Lastly, the inertial measurements (4.5) are fused with the leg odometry (4.8).
The main advantage of decoupling the attitude from the position and linear
velocity is that the resulting dynamics is LTV, and thus has guaranteed stability
properties. i.e., the filter will not diverge in finite time.

We use a LTV Kalman filter with the dynamics (4.4), the accelerometer (4.5),
and leg odometry (4.8).

2=f£+5(§—h£)
P=CP+PCT -KHP+Q (4.9)
K =PH'R™
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where the state x = [X”T v”T]T € RS is position and velocity of the base, the
input u = (R} fP — g™ € R3 is the acceleration of the base, the measurement
7= RZxéf € R? is the leg odometry, K € R®3 is the Kalman gain, P € R%0
is the covariance matrix, Q € R%6 is the process noise and R € R¥3 is the
measurement noise covariance, and

v _ 03 13 _
u] Q—[03 03] =105 4]

and I3 and 03 are the 3 X 3 identity matrix and matrix of all zeros, respectively.

-]

4.4 Experimental Results

To analyze the differences in state estimation between rigid and soft terrain,
we used Hy(Q and our state estimator. Hy(Q has twelve torque-controlled joints
powered by hydraulic actuators. HyQ has three types of on board propriocep-
tive sensors: joint encoders, force/torque sensors, and IMUs. Every joint has
an absolute and a relative encoder to measure the joint angle and speed. The
absolute encoder (AMS Programmable Magnetic Rotary Encoder - AS5045)
measures the joint angle when the robot is first turned on, while the relative
encoder (Avago Ultra Miniature, High Resolution Incremental Encoder - AEDA-
3300-TE1) measures how far the joint has moved at every epoch. Every joint
contains a force or torque sensor. Two joints have a load cell (Burster Subminia-
ture Load Cell - 8417-6005) and one joint has a custom designed torque sensor
based on strain-gauges. In the trunk of the robot there is a fibre optic-based,
military grade KVH 1775 IMU.

We used the state estimator (4.6)-(4.9) on the Soft Trot in Place and the
Rigid Trot in Place dataset from the dataset published in [83]. Hy(Q) was man-
ually controlled to trot on a foam block of 160 x 120 x 20 c¢m, and on a rigid
ground. An indentation test of the foam shows the foam has an average stiff-
ness of 2400 N/m. All of the sensors were recorded at 1000 Hz. A Motion
Capture System (MCS) recorded the ground truth data with millimetre accu-
racy at 250 Hz.

The experiments confirmed our original hypothesis that soft terrain nega-
tively impacts state estimation and also allowed us to investigate why. It is
important to note that rigid versus soft terrain had no impact on the attitude
estimation. For space reasons, all attitude plots have been omitted.

The first distinct difference between soft and rigid terrain is the specific force
measurement of the body as seen in Fig. 4.2. On the rigid terrain there are large

98



4.4. Experimental Results

S, O — i | i
RF
E 10 | RH| ™ ,
=3 210 LH | | | | |
600

Z 300

30 305 31 31.5 32 30 305 31 315 32
t (s) t (s)
(a) Rigid Terrain (b) Soft Terrain

Figure 4.2: The z component of the measured specific force a2 (top), and the
estimated ground reaction forces fzb (bottom), in the body frame B of HyQ during
a trotting experiment. The highlighted regions show when the given foot is in
stance, and the feet are denoted as left-front (LF), right-front (RF), left-hind (LH),
and right-hind (RH).

impacts and then vibrations every time a foot touches down. Whereas the soft
terrain damped out these vibrations. Next, on the soft terrain more prolonged
periods of positive and negative acceleration can be seen. This acceleration can
also be seen in the plots of the GRFs in Fig. 4.2 where the GRFs on the soft
terrain are more continuous when compared to the rigid terrain. In other words,
there are longer loading and unloading phases.

The most important differences between soft and rigid terrain are seen in
the velocity and position estimates as shown in Fig. 4.3. We can see that the
leg odometry has large erroneous peaks in z velocity at both touch-down and
lift-off. These peaks in velocities can then be seen in the position estimates as
a drift. On the other hand, the x and y position estimates are quite accurate
and only have a slow drift.

In the figures, we can also see multiple of the state estimators assumptions
being broken. First, there does not exist a constant € that can describe when
the foot is in contact with the ground, which is contradicting Assumption 4.1.
The contact € is no longer binary (i.e., supporting/not-supporting the weight of
the robot), but the contact is now a continuous value with varying amounts of
the robot’s weight being supported and sometimes even pushed. When trying

99



Experimental Results

4.4.

's (g€ S 715 (g) Ul pPwooz si MoJ Wo110q 3y}
pue s (00¢ > 7 S () swadxs [Ny 9yl Moys SMoJ om1 3saiy 9y “(Sn]q) waisAs sunided uoijow syl pue ‘(usau3)
K11pwopo 33| meJ ay3 SnsIdA Aw_a:_& uoisny Josuas 3uisn juswiadxs Suijoal e Suunp HAH Jo A/ Swely uonelineu
ay1 ut ‘(wo1roq pue a|ppiw) ,4 A1ID0J9A Yunil palewiss ay3 pue ‘(do1) ,x uoisod yunuy pajewilss ay| gy a4nSi4

ureia], Jjos (q) urera, prsry (e)
() # () 2 ()2 (OX] (s) 1 (OF]
e SIg 1€ 6§0¢ 0t ce Slg Ig 60 0¢ e SIg 1€ §0¢ 0F e SIg I€ §0gE 0t ¢ce GIE I€ 60€ 0 ¢ce G'Ig T€ S0€ OF
Tam ﬁunm
—_ ) WU ST —
gi ?% ‘EO g [T f.ﬁ'rgo E)
z ) x I z ) x I
() 2 ()1 (OF] ()1 OF! ()1
0SC00C0ST 00T 0S O 0SC00C0ST 00T 0S O 0SC00C0ST 00T 0S O 0SC00C0ST 00T 0S O 0SC00C0ST 00T 0OS O 0SC00C0ST 00T 0S O
—-am ﬁunm
z f T ! z R x !
[ <
= \ 3
°8 °8
z f x 4 z R T 4

100



4.5. Conclusions

to use the previous simple model, the contact ignores a large portion of the
loading and unloading phase. Furthermore, it often chatters rapidly between
contact /non-contact when the force is close to €. Second, the foot is moving for
almost the entire contact (i.e., non-zero acceleration) on soft terrain as shown
in Fig. 4.2. This contradicts Assumption 4.2 that the foot velocity is zero when
in contact. Third, (4.8) is broken. It assumes that all of the velocity (and all of
the acceleration) is a result of the GRFSs, but not all of the acceleration due to
gravity is being accounted for. Hence, the robot appears to drift up and away
from the ground.

There are a few simple ways to try to improve the estimates of this or other
similar state estimators. The first is to tune € in (4.3). By increasing € there
would be less erroneous velocity, but in doing so it would also ignore part of
the leg odometry. In general, on a planar surface, a reduced drift in the z
direction comes at the cost of an increased error in the x and y directions. A
second method could be to have an adaptive velocity bias for the leg odometry.
However, the bias is not constant and it depends on both the gait and the
terrain. Thus, the problem of estimating the body velocity of the robot using
leg odometry remains open.

4.5 Conclusions

In this letter, we present an experimental validation and a formal study on
the influence of soft terrain on state estimation for legged robots. We utilized a
state-of-the-art state estimator that fuses IMU measurements with leg odometry.
We experimentally analyzed the differences between soft and rigid terrain using
our state estimator and a dataset of the Hy(Q robot. That said, we report three
main outcomes. First, we showed that soft terrain results in a larger drift in
the position estimates, and larger errors in the velocity estimates compared to
rigid terrain. These problems are caused by the broken legged odometry contact
assumptions on soft terrain. Second, we also showed that over soft terrain, the
contact with the terrain is no longer binary and it often chatters rapidly between
contact and non-contact. Third, we showed that soft terrain affects many states
besides the robot pose. This includes the contact state and the GRFs which are
essential for the control of legged robots. Future works include extending the
state estimator to incorporate the terrain impedance in the leg odometry model.
Additionally, further datasets will be recorded to investigate the long-term drift
in the forward and lateral directions.
cd my
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ViTAL:
Vision-Based Terrain-Aware Locomotion
for Legged Robots

(© 2022. Reprinted, with permission. S. Fahmi, V. Barasuol, D. Esteban,
O. Villarreal, and C. Semini, "ViTAL: Vision-Based Terrain-Aware Locomotion
for Legged Robots," (under review) in IEEE Transactions on Robotics (T-RO),
vol. X, no. X, pp. X=X, XXXX 202X, doi: XX. XXX /XXX.XXX.XXX.

Abstract. This work is on vision-based planning strategies for legged robots
that separate locomotion planning into foothold selection and pose adaptation.
Current pose adaptation strategies optimize the robot’s body pose relative to
given footholds. If these footholds are not reached, the robot may end up
in a state with no reachable safe footholds. Therefore, we present a Vision-
Based Terrain-Aware Locomotion (ViTAL) strategy that consists of novel pose
adaptation and foothold selection algorithms. ViTAL introduces a different
paradigm in pose adaptation that does not optimize the body pose relative
to given footholds, but the body pose that maximizes the chances of the legs
in reaching safe footholds. ViTAL plans footholds and poses based on skills
that characterize the robot’s capabilities and its terrain-awareness. We use
the 90 kg Hy(Q) and 140 kg HyQReal quadruped robots to validate ViTAL, and
show that they are able to climb various obstacles including stairs, gaps, and
rough terrains at different speeds and gaits. We compare ViTAL with a baseline
strategy that selects the robot pose based on given selected footholds, and show
that ViTAL outperforms the baseline.

Accompanying Video. https://youtu.be/b5Ea7Jf6hbo
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5.1. Introduction

5.1 Introduction

Legged robots have shown remarkable agile capabilities in academia [84, 85,
73, 86, 74, 87] and industry [88, 89, 90]. Yet, to accomplish breakthroughs
in dynamic whole-body locomotion, and to robustly traverse unexplored envi-
ronments, legged robots have to be terrain aware. Terrain-Aware Locomotion
(TAL) implies that the robot is capable of taking decisions based on the ter-
rain [91]. The decisions can be in planning, control, or in state estimation, and
the terrain may vary in its geometry and physical properties [92, 3, 9, 20, 93,
2,94, 19, 12]. TAL allows the robot to use its on-board sensors to perceive its
surroundings and act accordingly. This work is on wision-based TAL planning
strategies that plan the robot’s motion (body and feet) based on the terrain
information that is acquired using vision (see Fig. 5.1).

5.1.1 Related Work - Vision-Based Locomotion Planning

Vision-based locomotion planning can either be coupled or decoupled. The cou-
pled approach jointly plans the body pose and footholds in a single algorithm.
The decoupled approach independently plans the body pose and footholds in
separate algorithms. The challenge in the coupled approach is that it is com-
putationally expensive to solve in real-time. Because of this, the decoupled
approach tends to be more practical since the high-dimensional planning prob-
lem is split into multiple low-dimensional problems. This also makes the lo-
comotion planning problem more tractable. However, this raises an issue with
the decoupled approach because the plans may conflict with each other since
they are planned separately. Note that both approaches could be solved using
optimization, learning, or heuristic methods.

Trajectory Optimization (TO) is one way to deal with coupled vision-based
locomotion planning. By casting locomotion planning as an optimal control
problem, TO methods can optimize the robot’s motion while taking into ac-
count the terrain information [95, 96, 97, 98, 99]. The locomotion planner can
generate trajectories that prevent the robot from slipping or colliding with the
terrain by encoding the terrain’s shape and friction properties in the optimiza-
tion problem [99]. TO methods can also include a model of the terrain as a cost
map in the optimization problem, and generate the robot’s trajectories based
on that [100]. TO methods provide guarantees on the optimality and feasibil-
ity of the devised motions, albeit being computationally expensive; performing
these optimizations in real-time is still a challenge. To overcome this issue, TO
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5.1. Introduction

Figure 5.1: The HyQ and HyQReal quadruped robots climbing stairs using Vision-
Based Terrain-Aware Locomotion (ViTAL).
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5.1. Introduction

approaches often implement hierarchical (decoupled) approaches. Instead of
decoupling the plan into body pose and footholds, the hierarchical approaches
decouple the plan into short and long-horizon plans [101, 102]. Additionally,
other work relies on varying the model complexity to overcome the computa-
tional issue with TO[103].

Reinforcement Learning (RL) methods mitigate the computational burden
of TO methods by training function approximators that learn the locomotion
plan [104, 105, 106, 107, 108, 109, 110]. Once trained, an RL policy can gen-
erate body pose and foothold sequences based on proprioceptive and/or visual
information. Yet, RL methods may require tedious learning (large amounts of
data and training time) given its high-dimensional state representations.

As explained earlier, decoupled locomotion planning can mitigate the prob-
lems of TO and RL by separating the locomotion plan into feet planning and
body planning [111, 112, 113, 114, 115, 116]. Thus, one can develop a more re-
fined and tractable algorithm for every module separately. In this work, planning
the feet motion (foothold locations) is called foothold selection, and planning the
body motion is called pose adaptation.

5.1.2 Related Work - Foothold Selection and Pose Adaptation

Foothold selection strategies choose the best footholds based on the terrain in-
formation and the robot’s capabilities. Early work on foothold selection was
presented by Kolter et al. [14] and Kalakrishnan et al. [15] where both ap-
proaches relied on motion capture systems and an expert user to select (label)
the footholds. These works were then extended in [16] using unsupervised learn-
ing, on-board sensors, and considered the terrain information such as the terrain
roughness (to avoid edges and corners) and friction (to avoid slippage). Then,
Barasuol et al. [17] extended the aforementioned work by selecting footholds
that not only considers the terrain morphology, but also considering leg colli-
sions with the terrain. Further improvements in foothold selection strategies
added other evaluation criteria such as the robot’s kinematic limits. These
strategies use optimization [112, 117, 118], supervised learning [113, 119, 120],
RL [84, 94], or heuristic [121] methods.

Similar to foothold selection, pose adaptation strategies optimize the robot’s
body pose based on the terrain information and the robot’s capabilities. An
early work on vision-based pose adaptation was presented in [111]. The goal
was to find the optimal pose that maximizes the reachability of given selected
footholds, avoid collisions with the terrain, and maintain static stability. The
given footholds are based on a foothold selection algorithm that considers the
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terrain geometry. Another approach was presented in [122] that finds the opti-
mal body elevation and inclination given the selected footholds, and the robot
location in the map. The pose optimizer maximizes different margins that in-
crease the kinematic reachability of the legs and static stability, and avoids
terrain collisions. This approach was then extended in [123] with an improved
version of the kinematic margins. A similar approach was presented in [112]
where the goal was to find an optimal pose that can maximize the reachabil-
ity of given selected footholds. The reachability term is accounted for in the
cost function of the optimizer by penalizing the difference between the default
foothold position and the selected one. The work in [114] builds on top of the
pose optimizer of [112] to adapt the pose of the robot in confined spaces using 3D
terrain maps. This is done using a hierarchical approach that first samples body
poses that allows the robot to navigate through confined spaces, then smooths
these poses using a gradient descent method that is then augmented with the
pose optimizer of [112]. The work presented in [124] generates vision-based pose
references that also rely on given selected footholds to estimate the orientation
of the terrain and send it as a pose reference. Alongside the orientation refer-
ence, the body height reference is set at a constant vertical distance (parallel to
gravity) from the center of the approximated plane that fits through the selected
footholds.

The aforementioned pose adaptation strategies focus on finding one optimal
solution based on given footholds; footholds have to be first selected and given to
the optimizer. Despite selecting footholds that are safe, there are no guarantees
on what would happen during execution if the footholds are not reached or if
the robot deviates from its planned motion. If any of these cases happen, the
robot might end up in a pose where no safe footholds can be reached. This
would in turn compromise the safety and performance of the robot. Even if the
strategy can re-plan, reaching a safe pose might not be possible if the robot is
already in an unsafe state.

5.1.3 Proposed Approach

We propose Vision-Based Terrain-Aware Locomotion (ViTAL) which is an online
whole-body locomotion planning strategy that consists of a foothold selection
and a pose adaptation algorithm. The foothold selection algorithm used in this
work is an extension of the Vision-Based Foothold Adaptation (VFA) algorithm
of the previous work done by Villarreal et al. [113] and Esteban et al. [120].
Most importantly, we propose a novel Vision-Based Pose Adaptation (VPA)
algorithm that introduces a different paradigm to overcome the drawbacks of
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the state-of-the-art pose adaptation methods. Instead of finding body poses that
are optimal for given footholds, we propose finding body poses that mazximize the
chances of reaching safe footholds in the first place. Hence, we are interested in
putting the robot in a state in which if it deviates from its planned motion, the
robot remains around a set of footholds that are still reachable and safe. The
notion of safety emerges from skills that characterize the robot’s capabilities.

ViTAL plans footholds and body poses by sharing the same robot skills (both
for the VPA and the VFA). These skills characterize what the robot is capable
of doing. The skills include, but are not limited to: the robot’s ability to avoid
edges, corners, or gaps (terrain roughness), the robot’s ability to remain within
the workspace of the legs during the swing and stance phases (kinematic limits),
and the robot’s ability to avoid colliding with the terrain (leg collision). These
skills are denoted by Foothold Evaluation Criteria (FEC). Evaluating the FEC is
usually computationally expensive. Thus, to incorporate the FEC in ViTAL, we
rely on approximating them using supervised learning via Convolutional Neural
Networks (CNNs). This allows us to continuously adapt both the footholds
and the body pose. The VFA and the VPA are decoupled and can run at a
different update rate. However, they are non-hierarchical, they run in parallel,
and they share the same knowledge of the robot skills (the FEC). By that, we
overcome the limitations that result from hierarchical planners as mentioned
in [114], where high-level plans may conflict with the low-level ones causing a
different robot behavior.

The VPA utilizes the FEC to approximate a function that provides the num-
ber of safe footholds for the legs. Using this function, we cast a pose optimizer
which is a non-linear optimization problem that maximizes the number of safe
footholds for all the legs subject to constraints added to the robot pose. The
pose optimizer is a key element in the VPA since it adds safety layers and con-
straints to the learning part of our approach. This makes our approach more
tractable which mitigates the issues that might arise from end-to-end policies in
RL methods.

5.1.4 Contributions

ViTAL mitigates the above-mentioned conflicts that exist in other decoupled
planners [114, 117, 116, 112]. This is because both the VPA and the VFA share
the same skills encoded in the FEC. In other words, the VPA and the VFA will
not plan body poses and footholds that may conflict with each other because
both planners share the same logic. In this work, the formulation of the VPA
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allows ViTAL to reason about the leg’s capabilities and the terrain information.
However, the formulation of the VPA could be further augmented by other body-
specific skills. For instance, the VPA could be reformulated to reason about the
body collisions with the environment similar to the work in [116, 125]. The
paradigm of the FEC can also be further augmented to consider other skills.
We envision that some skills are best encoded via heuristics while others are
well suited through optimization. For this reason, the FEC can also handle
optimization-based foothold objectives such as the ones in [117].

Following the recent impressive results in RI.-based locomotion controllers,
we envision ViTAL to be inserted as a module into such control frameworks. To
elaborate, current RL-based locomotion controllers [104, 106, 84, 108] are of a
single network; the RL framework is a single policy that maps the observations
(proprioceptive and exteroceptive) to the actions. This may be challenging since
it requires careful reward shaping, and generalizing to new tasks or different sen-
sors (observations) makes the problem harder [126]. For this reason, and similar
to Green et al. [126], we envision that ViTAL can be utilized as a planner for RL
controllers where the RIL controller will act as a reactive controller that then
receives guided (planned) commands in a form of optimal poses and footholds
from ViTAL.

ViTAL differs from TO and optimization-based methods in several aspects.
The FEC is designed to independently evaluate every skill (criterion). Thus, one
criterion can be optimization-based while other could be using logic or heuristics.
Because of this, ViTAL is not restricted by solving an optimization problem
that handles all the skills at once. Another difference between ViTAL and TO
is in the way the body poses are optimized. In TO, the optimization problem
optimizes a single pose to follow a certain trajectory. The VPA in ViTAL
optimizes for the body poses that maximizes the chances of the legs in reaching
safe footholds. In other words, the VPA finds a body pose that would put the
robot in a configuration where the legs have the maximum possible number of
safe footholds. In fact, this paradigm that the VPA of ViTAL introduces may
be also encoded in TO. Additionally, TO often finds body poses that considers
the leg’s workspace, but to the best of the authors’ knowledge, there is no TO
method that finds body poses that consider the legs’ collision with the terrain,
and the feasibility of the swinging legs’ trajectory.

To that end, the contributions of this article are
e ViTAL, an online vision-based locomotion planning strategy that simul-
taneously plans body poses and footholds based on shared knowledge of
robot skills (the FEC).
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e An extension of our previous work on the VFA algorithm for foothold
selection that considers the robot’s body twist and the gait parameters.

e A novel pose adaptation algorithm called the VPA that finds the body
pose that maximizes the number of safe footholds for the robot’s legs.

5.2 Foothold Evaluation Criteria (FEC)

The FEC is main the building block for the VFA and the VPA. The FEC are sets
of skills that evaluate footholds within heightmaps. The skills include the robot’s
ability to assess the terrain’s geometry, avoid leg collisions, and avoid reaching
kinematic limits. The FEC can be model-based as in this work and [111, 113],
or using optimization techniques as in [112, 117]. The FEC of this work extends
the criteria used in our previous work [17, 113, 120].

The FEC takes a tuple T as an input, evaluates it based on multiple criteria,
and outputs a boolean matrix pgr. The input tuple T is defined as

T = (H, zp, vp, @) (5.1)

where H € R"™*" is the heightmap of dimensions 4, and hy, zn € R is the hip
height of the leg (in the world frame), v, € RS is the base twist, and « are the
gait parameters (step length, step frequency, duty factor, and time remaining
till touchdown). The heightmap H is extracted from the terrain elevation map,
and is oriented with respect to the horizontal frame of the robot [127]. The
horizontal frame coincides with the base frame of the robot, and its xy-plane is
perpendicular to the gravity vector. Each pixel of H denotes the terrain height
that corresponds to the location of this pixel in the terrain map. Each pixel
(cell) of H also corresponds to a candidate foothold p. € R? for the robot.

In this work, we only consider the following FEC: Terrain Roughness (TR),
Leg Collision (LC), Kinematic Feasibility (KF), and Foot Trajectory Collision
(FC). Each criterion C outputs a boolean matrix pc. Once all of the criteria are
evaluated, the final output pgge is the element-wise logical AND (A) of all the
criteria. The output matrix pgfe € R™=xhy is a boolean matrix with the same
size as the input heightmap H. psafe indicates the candidate footholds (elements
in the heightmap H) that are safe. An element in the matrix ugg that is true,
corresponds to a candidate foothold p. in the heightmap H that is safe. The
output of the FEC is

Hsafe = MTR A ULC A UKF A UFC. (5.2)
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An overview of the criteria used in this work is shown in Fig. 5.2(A) and is
detailed below.

Terrain Roughness (TR). This criterion checks edges or corners in the heightmap
that are unsafe for the robot to step on. For each candidate foothold p. in H,
we evaluate the mean and standard deviation of the slope relative to its neigh-
boring footholds, and put a threshold that defines whether a p. is safe or not.
Footholds above this threshold are discarded.

Leg Collision (LC). This criterion selects footholds that do not result in leg colli-
sion with the terrain during the entire gait cycle (from lift-off, during swinging,
touchdown and till the next lift-off). To do so, we create a bounding region
around the leg configuration that corresponds to the candidate foothold p. and
the current hip location. Then, we check if the bounding region collides with the
terrain (the heightmap) by measuring the closest distance between them. If this
distance is lower than a certain value, then the candidate foothold is discarded.
Kinematic Feasibility (KF). This criterion selects footholds that are kinemati-
cally feasible. It checks whether a candidate foothold p. will result in a trajectory
that remains within the workspace of the leg during the entire gait cycle. To do
so, we check if the candidate foothold p, is within the workspace of the leg dur-
ing touchdown and next lift-off. Also, we check if the trajectory of the foot from
the lift-off position p;, till the touchdown position at the candidate foothold p,
is within the workspace of the leg. In the initial implementation in [113], this
criterion was only evaluated during touchdown. In this work, we consider this
criterion during the entire leg step-cycle.

Foot Trajectory Collision (FC). This criterion selects footholds that do not
result in foot trajectory collision with the terrain. It checks whether the foot
swing trajectory corresponding to a candidate foothold p. is going to collide
with the terrain or not. If the swing trajectory collides with the terrain, the
candidate foothold p. is discarded.

Remark 5.1 There are three main sources of uncertainty that can affect the
foothold placement [17]. These sources of uncertainty are due to trajectory track-
ing errors, foothold prediction errors, and drifts in the map. To allow for a
degree of uncertainty, after computing usate, candidate footholds that are within
a radius of unsafe footholds are also discarded. This is similar to the erosion
operation in image pProcessing.

Remark 5.2 The initial implementation of the FEC in [113] only considered
the heightmap H as an input; the other inputs of the tuple T in (5.1) were
kept constant. This had a few disadvantages that we reported in [120] where we
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extended the work of [113] by considering the linear body heading velocity. In
this work, we build upon that by considering the full body twist v, and the gait
parameters a as expressed by T in (5.1).

5.3 Vision-Based Foothold Adaptation (VFA)

The VFA evaluates the FEC to select the optimal foothold for each leg [17,
113, 120]. The VFA has three main stages as shown in Fig. 5.2(B): heightmap
extraction, foothold evaluation, and trajectory adjustment.
Heightmap Extraction. Using the current robot states and gait parameters,
we estimate the touchdown position of the swinging foot in the world frame as
detailed in [113]. This is denoted as the nominal foothold p, € R3. Then, we
extract a heightmap Hy¢, that is centered around p,.
Foothold Evaluation. After extracting the heightmap, we compute the optimal
foothold p. € R? for each leg. We denote this by foothold evaluation which is
the mapping

8(Tuta) : Tyfa — Do (53)

that takes an input tuple Ty, that is defined as

vaa = (HVfaa Zha Vb, a’ Pn) (54)

Once we evaluate the FEC in (5.2), from all of the safe candidate footholds in
Usafe, We select the optimal foothold p. as the one that is closest to the nominal
foothold p,. The aim is to minimize the deviation from the original trajectory
and thus results in a less disturbed or aggressive motion. An overview of the
foothold evaluation stage is shown in Fig. 5.3 where the tuple of the FEC T
in (5.1) is extracted from the VFA tuple Tys, in (5.4) to compute pgafe. Then,
using p, and pgfe, we extract p,. as the safe foothold that is closest to p,.
Trajectory Adjustment. The leg’s swinging trajectory is adjusted once p. is
computed.

Remark 5.3 To compute the foothold evaluation, one can directly apply the ex-
act mapping g(Tyts). Yet, computing the foothold evaluation leads to evaluating
the FEC which is generally computationally expensive. Thus, to speed up the
computation and to continuously run the VFA online, we learn the foothold eval-
uation g(Tye,) using supervised learning via CNNs. Once trained, the VFA can
then be executed online using the CNNs. The CNN architecture of the foothold
evaluation is explained in Section 5.9.1.
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Figure 5.2: Overview of ViTAL. lllustrations are not to scale. (A) The Foothold
Evaluation Criteria (FEC): Leg Collision (LC), Kinematic Feasibility (KF), and Foot
Trajectory Collision (FC). (B) The Vision-based Foothold Adaptation (VFA) pipeline.
First, we extract the heightmap Hy, around the nominal foothold p,. Then, we
evaluate the heightmap either using the exact evaluation g(7yf,) or using the CNN
as an approximation g(Tyt,). Once the optimal foothold p. is selected, the swing
trajectory is adjusted. (C) The Vision-Based Pose Adaptation (VPA) pipeline. First,
we extract the heightmap Hi,, for all the legs. The heightmaps are centered around
the projection of the leg hip locations. Then, we evaluate the FEC to compute F
for all the hip heights of all the legs (pose evaluation). Then, we approximate
a continuous function ¥ from F (function approximation). The pose optimizer
finds the pose that maximizes & for all of the legs (pose optimization). (D) Our
locomotion framework. ViTAL consists of the VPA and the VFA algorithms. Both
algorithms rely on the robot skills which we denote by FEC. 7, are the desired joint
torques that are sent to the robot.
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Figure 5.3: Overview of the foothold evaluation stage in the VFA algorithm, and
the pose evaluation stage in the VPA algorithm.

5.4 Vision-Based Pose Adaptation (VPA)

The VPA generates pose references that maximize the chances of the legs to
reach safe footholds. This means that the robot pose has to be aware of what
the legs are capable of and adapt accordingly. Therefore, the goal of the VPA is
to adapt the robot pose based on the same set of skills used by the VFA (based
on the FEC).

5.4.1 Definitions and Notations

Number of Safe Footholds. As explained earlier, the FEC takes a tuple T as
an input and outputs the matrix ug.f.. Based on that, let us define the Number
of Safe Footholds (ng)

ngt := cardinal({e € psafe : € = 1}) (5.5)
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as the number of true elements in the boolean matrix ugafe.
Set of Safe Footholds. Consider a set of tuples 7 where each element T; € T
is a tuple defined as

Ti = (H, zp,, Vb @) (5.6)

and zj, € Z is a hip height element in the set of hip heights Z (in the world
frame). All the tuple elements T; € 7 share the same heightmap H, body
twist v, and gait parameters a.

Evaluating the FEC in (5.2) for every T; € 7 that corresponds to z;, € Z,
and computing the cardinal in (5.5) yields ng; for every T;. This yields the Set
of Safe Footholds (¥ ) which is a set containing the number of safe footholds ng¢
that are evaluated based on the FEC given the set of tuples 7~ that corresponds
to the set of hip heights Z but shares the same heightmap H, body twist v, and
gait parameters a.

5.4.2 From the Set of Safe Footholds to Pose Evaluation

The set of safe footholds 7 is one of the building blocks of the VPA. To compute
¥, we compute the input tuple Typa

Tvpa = (vaa, Vp, @) (57)

that we then augment with the hip heights z;, in the hip heights set Z yielding
the set of tuples 7. Then, we evaluate the FEC in (5.2) for every T; € 7, and
computing the cardinal in (5.5). This can be expressed by the mapping

gvpa(Tvpa) : Tvpa - 7: (58)
which is referred to as pose evaluation. We can express ¥ as
F = {nsf,i = gvpa,i(Ti) VT; € T} (59)

Remark 5.4 Since Z is an infinite continuous set, so is F which is not nu-
merically feasible to compute. Hence, we sample a finite set Z of N, samples
of hip heights that results in a finite set of safe footholds F. To use the set of
safe footholds in an optimization problem, we need a continuous function. Thus,
after we compute F, we estimate a continuous function F as explained next.

An overview of the pose evaluation is shown in Fig. 5.3 where the tuple Ty,
in (5.7) is augmented with the hip heights z;, from Z to construct the FEC
tuples T; in (5.6). For every tuple T;, we evaluate the FEC using (5.2) and
compute ng; in (5.5) using the mapping in (5.8). Finally, the set ¥ includes all
the elements ng; as in (5.9).
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5.4.3 Vision-based Pose Adaptation (VPA) Formulation

The VPA has four main stages as shown in Fig. 5.2(C). First, heightmap ez-
traction that is similar to the VFA. Second, pose evaluation where we compute
F. Third, function approzimation where we estimate F from F. Fourth, pose
optimization where the optimal body pose is computed.

Heightmap Extraction. We extract one heightmap H, per leg that is centered
around the projection of the leg’s hip location in the terrain map (proj.(pn)
instead of p,).

Pose Evaluation. After extracting the heightmaps, we compute ¥ from the
mapping in (5.8) of the pose evaluation. In the pose evaluation, the FEC are
evaluated for all hip heights in Z given the input tuple Typa as shown in Fig. 5.3.
Function Approximation. In this stage, we estimate the continuous function F
from ¥, as explained in Remark 5.4. This is done by training a parameterized
model of the inputs 7; € 7 and the outputs Ngf; € . The result is the function
(model) F that is parameterized by the model parameters (weights) w. The
function approximation is detailed later in this section.

Pose Optimization. Evaluating the FEC and approximating it with the func-
tion F , introduces a metric that represents the possible number of safe footholds
for every leg. Based on this, the goal of the pose optimizer is to find the optimal
pose that will maximize the number of safe footholds for every leg (maximize ?A')
while ensuring robustness. The pose optimizer is detailed later in this section.

Remark 5.5 Similar to Remark 5.5, one can directly apply the exact evaluation
gvpaTypa) for a given Typa. Yet, since this is computationally expensive, we rely
on estimating the evaluation gypa(Typa) using the CNNs. In fact, the learning
part is applied to both the pose evaluation and the function approzimation. This
means that the pose optimization is running online, outside the CNN. The CNN
architecture of the pose evaluation is explained in Section 5.9.1.

5.4.4 Function Approximation

The goal of the function approximation is to approximate the set of safe footholds
F from the discrete set F computed in the pose evaluation stage. This is done to
provide the pose optimizer with a continuous function. Given a dataset (Z, F)
of hip heights z;, € Z and number of safe footholds Ngf; € Z. the function ap-
proximation estimates a function ?A'(zhi, w) that is parameterized by the weights
w. Once the weights w are computed, the function estimate ?A'(zhi, w) is then
reconstructed and sent to the pose optimizer.
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It is important to choose a function F that can accurately represent the
nature of the number of safe footholds. The number of safe footholds approaches
zero when the hip heights approach 0 or co. Thus, we want a function that fades
to zero at the extremes (Gaussian-like functions), and captures any asymmetry
or flatness in the distribution. Hence, we use radial basis functions of Gaussians.
With that in mind, we are looking for the weights w

w = arg min S(w) (5.10)
that minimize the cost S(w)
Nn
S(w) = Z(nsf,i — Fzn, w))> (5.11)
i=1

which is the sum of the squared residuals of ng; and ?A”(zhi, w). Ny is the number
of samples (the number of the finite set of hip heights). The function ¥ (zs,, w)
is the regression model (the approximation of #) that is parameterized by w.
The function ?A'(zh[, w) is the weighted sum of the basis functions

E
F(@hpw) = ) We - 8(2n Zer Ce) (5.12)

e=1

where w € RE, and E is the number of basis functions. The basis function is a
radial basis function of Gaussian functions

8(Zhys Te» o) = exp(=0.5(zn, — co) 2, M (zn, — c2)) (5.13)

where X, and ¢, are the parameters of the Gaussian function. Since the func-
tion model in (5.12) is linear in the parameters, the weights of the function
approximation can be solved analytically using least squares. In this work, we
keep the parameters of the Gaussians (X and ¢) fixed. Hence, the function F is
only parameterized by w. For more information on regression with radial basis
functions, please refer to [64] and Section 5.9.2.

5.4.5 Pose Optimization

The pose optimizer finds the robot’s body pose u that maximizes the number
of safe footholds for all the legs. This is casted as a non-linear optimization
problem. The notion of safe footholds is provided by the function ¥ (zj, w) that
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maps a hip height z; to a number of safe foothold ngs, and is parameterized by w.
Since the pose optimizer is solving for the body pose u, the function fj(zh) should
be encoded using the body pose rather than the hip heights (?A' = fj(zh(u))). This
is done by estimating the hip height as a function of the body pose (z, = zx(u))
as shown in Section 5.9.3.

5.4.6 Single-Horizon Pose Optimization

The pose optimization problem is formulated as

maximize C(Fi(zn (2 37)) Y1 € N (5.14)

U=\2p,py

subject to Umin < U < Umax (5.15)
Aupin < Au < Aoy (5.16)

where u = [z, 8, 7] € R? are the decision variables (robot body pose) consisting
of the robot height, roll and pitch, respectively, C is the cost function, Fis F
for every leg I where N; = 4 is the number of legs, z;, € R is the hip height of
the leg [, and wupi, and upyax are the lower and upper bounds of the decision
variables, respectively. Au = u — uj_ is the numerical difference of u where uy_;
is the output of u at the previous instant, and Aupi, and Aupm., are the lower
and upper bounds of Au, respectively. We can re-write (5.16) as

Attpnin + Up—1 < u < Aipax + Uj—1. (5.17)

The cost function in (5.14) maximizes ¥ for all of the legs. We designed several
types of cost functions as detailed next. The constraints in (5.15) and (5.16)
ensure that the decision variables and their variations are bounded.

5.4.7 Cost Functions

A standard cost function can be the sum of the squares of F; for all of the legs

N=t
1F1 )G (5.18)
=1

Csum = Z
=

where another option could be the product of the squares of ?Aj for all of the legs

N;=4
Corod = | | I1Fizn)II3- (5.19)
=1
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Figure 5.4: Using the sum of squared integrals as a cost function in the pose opti-
mization of the VPA. The two curves represent 7A-7 The x-axis is the hip height and
the y-axis is ng;. The figure shows two optimal poses: u] which is from using Csum
or Cprod, and us which is from using Ciy.

The key difference between an additive cost Csym and a multiplicative cost Cproq
is that the latter puts equal weighting for each #,. This is important since we
do not want the optimizer to find a pose that maximizes F for one leg while
compromising the other leg(s). One can also define the cost

N;=4
Gu= I [
=1 z

Zhl +m
hl -m

Filzn) da 15 (5.20)

which is the sum of squared integrals that can be numerically approximated as

zhl+m R ~ N
/ Fi(zn,) dzn, = m - (Fi(zn, — m) + Fi(zp, + m)) (5.21)
Zhl—m
yielding
N;=4
Cow = > - (Filz, —m) + Filzn +m)I2. (5.22)
=1

In this cost option, we do not find the pose that maximizes F. Instead, we
want to find the pose that maximizes the area around F that is defined by the
margin m. Using Cy, is important since it adds robustness in case there is any
error in the pose tracking during execution. Because of possible tracking errors
during execution, the robot might end up in the pose u* + m instead of u*. If
we use Ciyt as a cost function, the optimizer will find poses that maximizes the
number of safe footholds not just for u* but within a vicinity of m.
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Using Ciy as a cost function can be motivated by taking Fig. 5.4 as an exam-
ple. In this figure, there are two curves that represent #; where the horizontal
axis is the hip height and the vertical axis represent ng. The figure shows two
optimal poses where uj is the optimal pose using the cost functions Csym or

Cprod that only maximize for %7, and uj is the optimal pose using the cost func-
tion Cint. As shown in the figure, if Coum 0or Cproq is used, the optimal pose will
be u] which is indeed the one that results in the maximum ?A} However, if there
is a tracking error of m (thus the robot reaches uj +m), the robot might end up
in the pose uj + m that results in a small number of safe footholds. Using Ciyt
will take into account the safe footholds within a margin m. This might result
in a pose that does not yield the maximum number of safe footholds, but it will
result in a safer foothold in case the robot pose has any tracking errors.

5.4.8 Receding-Horizon Pose Optimization

Adapting the robot’s pose during dynamic locomotion requires reasoning about
what is ahead of the robot: the robot should not just consider its current state
but also future ones. For that, we extend the pose optimizer to consider the
current and future states of the robot in a receding horizon manner. To for-
mulate the receding horizon pose optimizer, instead of considering F ¥ 1eN,
in the single horizon case, the pose optimizer will consider ?A"I i YIeN, jeN,
where Nj, is the receding horizon number. We compute 7?1 ; in the same way
explained in the pose evaluation stage. More details on computing ?Af j can be
found in Section 5.9.4.
The receding horizon pose optimization problem is

Np
maximize Z Ci(F1.j(zn, (1))
”2[“{""’”&,] =

Np—1

Ml = ujal

j=1

VIEN, jeN, (5.23)
subject to Umin < U < Umax (5.24)

Aupin < Au < Atpax (5.25)

where u = [u{, . ,ujr, . ,uﬁ,h] e R3Nn are the decision variables during the

entire receding horizon Nj,. Each variable u; = [z, Bj, ¥;] € R? is the optimal
pose of the horizon j.
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The first term in (5.23) is the sum of the cost functions C; during the entire
horizon (Vj € Nj). The cost C; can be any of the aforementioned cost functions.
The second term in (5.23) penalizes the deviation between two consecutive opti-
mal poses within the receding horizon (u; and uj,1). The second term is added
so that each optimal pose u; is also taking into account the optimal pose of the
upcoming sequence u;41 (to connect the solutions in a smooth way). Similar to
the single horizon pose optimizer, uyi, and uyax are the lower and upper bounds
of the decision variables, respectively. Furthermore, Au denotes the numerical
difference of u, while Aupmin and Aunax are the lower and upper bounds of Au,
respectively. Note that the constraints of the single horizon and the receding
horizon are of different dimensions.

5.5 System Overview

Our locomotion framework that is shown in Fig. 5.2(D) is based on the Reactive
Controller Framework (RCF) [127]. ViTAL complements the RCF with an
exteroceptive terrain-aware layer composed of the VFA and the VPA. ViTAL
takes the robot states, the terrain map and user commands as inputs, and sends
out the selected footholds and body pose to the RCFE (perceptive) layer. The
RCF takes the robot states and the references from ViTAL, and uses them inside
a motion generation and a motion control block. The motion generation block
generates the trajectories of the leg and the body, and adjusts them with the
reflexes from [127, 6]. The legs and body references from the motion generation
block are sent to the motion control block. The motion control block consists
of a Whole-Body Control (WBC) [1] that generates desired torques that are
tracked via a low-level torque controller [128], and sent to the robot’s joints.
The framework also includes a state estimation block that feeds back the robot
states to each of the aforementioned layers [129]. More implementation details
on ViTAL and the entire framework is in Section 5.9.5.

We demonstrate ViTAL on the 90 kg Hy() and the 140 kg HyQReal quadruped
robots. Each leg of the two robots has 3 degrees of freedom (3 actuated joints).
The torques and angles of the 12 joints of both robots are directly measured.
The bodies of Hy() and HyQReal have a tactical-grade Inertial Measurement
Unit (IMU) (KVH 1775). More information on Hy() and Hy(QReal can be found
in [65], and [73] respectively.

We noticed a significant drift in the states of the robots in experiment. To
tackle this issue, the state estimator fused the data from a motion capture system
and the IMU. This reduced the drift in the base states of the robots albeit not
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eliminating it completely. Improving the state estimation is an ongoing work
and is out of the scope of this article. We used the grid map interface [130] to
get the terrain map in simulation. Due to the issues with state estimation on
the real robots, we constructed the grid map before the experiments, and used
the motion capture system to locate the map with respect to the robot.

5.6 Results

We evaluate ViTAL on Hy(Q) and HyQReal. We consider all the FEC mentioned
earlier for the VFA and the VPA. We use the receding horizon pose optimizer
of (5.25) and the sum of squared integral of (5.22). We choose stair climbing
as an application for ViTAL. Climbing stairs is challenging for Hy(Q) due to its
limited leg workspace in the sagittal plane. Videos associated with the upcoming
results can be found in the supplementary materials and [131]. Finally, an
analysis of the accuracy of the CNNs and the computational time of ViTAL can
be found in Section 5.9.6 and Section 5.9.7, respectively.

5.6.1 Climbing Stairs (Simulation)

We carried out multiple simulations where Hy(Q) is climbing the stairs shown
in Fig. 5.5. Each step has a rise of 10 cm, and a go of 25 cm. Hy(Q) is commanded
to trot with a desired forward velocity of 0.2m/s using the VPA and the VFA.
Figure 5.5 shows screenshots of one simulation run, and Video 1 shows three
simulation runs.

Figure 5.5 shows the ability of the VPA in adapting the robot pose to increase
the chances of the legs to succeed in finding a safe foothold. In Fig. 5.5(B), HyQ
raised its body and pitched upwards so that the front hips are raised to increase
the workspace of the front legs when stepping up. In Fig. 5.5(C), Hy(Q) raised
its body and pitched downwards so that the hind hips are raised. This is done
for two reasons. First, to have a larger clearance between the hind legs and the
obstacle, and thus avoiding leg collision with the edge of the stairs. Second, to
increase the workspace of the hind legs when stepping up, and thus avoiding
reaching the workspace limits and collisions along the foot swing trajectory.
In Fig. 5.5(D), Hy(Q lowered its body and pitched downwards so that the front
hips are lowered. This is done for two reasons: First, to increase the workspace
of the front legs when stepping down, and thus avoiding reaching the workspace
limits. Second, to have a larger clearance between the front legs and the obstacle,
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Figure 5.5: HyQ climbing stairs in simulation.  (A) The full scenario.
(B) The robot pitches up to allow for safe footholds for the front legs.
(C) The robot lifts up the hind hips to avoid hind leg collisions with the step.
(D) The robot pitches down to allow for safe footholds for the front legs.
(E) The robot lowers the hind hips to allow for safe footholds for the legs when
stepping down.
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Figure 5.6: Climbing Stairs: A More Complex Scenario. Top: Overlayed screen-
shots of HyQ climbing stairs. Bottom: the optimal height and corresponding pitch
(presented by the arrows) and the foot trajectories of LF and RH legs.
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and thus avoiding leg collisions. In Fig. 5.5(E), Hy(Q lowered its hind hips to
increase the hind legs’ workspace when stepping down.

Throughout these simulations, the robot continuously adapted its body pose
and its feet to find the best trade-off between increasing the kinematic feasibility,
and avoiding trajectory and leg collision. This can be seen in Video 1 where
the robot’s legs and the corresponding feet trajectories never collided with the
terrain. The robot took multiple steps around the same foot location before
stepping over an obstacle. The reason behind this is that the robot waited for
the VPA to change the pose and allow for safe footholds, and then the VFA
took the decision of stepping over the obstacle.

We carried out another scenario where Hy() is climbing the stairs setup
in Fig. 5.6 where each step has a rise of 10cm, and a go of 25ecm. Hy(Q) is
commanded to trot with a desired forward velocity of 0.2m/s using ViTAL.
The results are reported in Fig. 5.6 and Video 2. Figure 5.6 shows the robot’s
height and pitch based on the VPA, and the corresponding feet trajectories of
the LF leg and the RH leg based on the VFA. Hy(Q)’s behavior was similar to
the previous section: it accomplished the task without collisions or reaching
workspace limits.

5.6.2 Climbing Stairs (Experiments)

To validate ViTAL in experiments, we created the setups shown in Fig. 5.1.
Each step has a rise of 10 cm, and a go of 28 cm. In the first set of experiments,
HyQ is commanded to crawl over the setups in Fig. 5.1(A,B) with a desired
forward velocity of 0.1 m/s using the VPA and the VFA. Figures 5.7(A-F) show
screenshots of one trial. Video 3 shows Hy() climbing back and forth the setup
in Fig. 5.1(B) five times. Video 4 shows Hy(Q) climbing the Fig. 5.1(A) setup,
which is reported in Fig. 5.8. Figure 5.8 shows the robot’s height and pitch based
on the VPA and the corresponding feet trajectories of the Left-Front (LF) leg
and the Right-Hind (RH) leg based on the VFA. This set of experiments confirms
that ViTAL is effective on the real platform. The robot managed to accomplish
the task without collisions or reaching workspace limits.

In the second set of experiments, Hy() is commanded to trot over the setup
in Fig. 5.1(B) with a desired forward velocity of 0.25m/s using the VPA and the
VFA. Figures 5.7(G-L) show separate screenshots of this trial. Video 5 shows
three trials of Hy(Q) climbing the same setup. This set of experiments shows
that ViTAL can handle different gaits.

Finally, we carried out an experiment where HyQReal is commanded to
crawl over the setup in Fig. 5.1(C) with a desired forward velocity of 0.2m/s
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Figure 5.7: HyQ and HyQReal climbing stairs in experiment. (A-F) HyQ
crawling over with 0.1m/s commanded forward velocity. (G-L) HyQ trotting
over with 0.25m/s commanded forward velocity. (M-R) HyQReal crawling over
with 0.2m/s commanded forward velocity.
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Figure 5.8: HyQ climbing stairs in experiment. The figure shows the optimal height
and corresponding pitch (presented by the arrows) based on the VPA, and the foot
trajectories of the LF and RH legs based on the VFA.

using the VPA and the VFA. The results are reported in Fig. 5.7(M-R) that
show screenshots of this trial. Video 6 shows Hy(QReal climbing this stair setup
(Fig. 5.1(C)). This set of experiments shows that ViTAL can work on different
legged platforms.

5.6.3 Climbing Stairs with Different Forward Velocities

We evaluate the performance of Hy() and HyQReal under different commanded
velocities using ViTAL. We carried out a series of simulations using the stairs
setup shown in Fig. 5.6. Hy(Q) is commanded to trot at four different forward
velocities: 0.2m/s, 0.3m/s, 0.4m/s, and 0.5m/s. The results are reported
in Fig. 5.9 and in Video 7. Figure 5.9 shows the numerical differences Az, and Ay,
and the tracking errors of the body height and pitch, respectively. Hy() was able
to climb the stairs terrain under different commanded velocities. However, as
the commanded velocity increases, Hy() started having faster (abrupt) changes
in the body pose as shown in the top two plots of Fig. 5.9. As a result, the
height and pitch tracking errors increase proportionally to the commanded speed
as shown in the bottom two plots of Fig. 5.9. Similarly, we evaluate ViTAL
on HyQReal and commanded it to trot with five different forward velocities:
0.2m/s, 0.3m/s, 0.4m/s, 0.5m/s, and 0.75m/s. We report this simulation
in Video 8 where we show that ViTAL is robot independent. Yet, since the

127



5.6. Results

%1073 |—vb:0.2 m/s memy,=0.3 m/s 1p=0.4 m/s w—,=0.5 m/s

1 I I I

4
2 .
0
2

Height Error [m

Pitch Error [deg]
> o

1.5 2 2.5 3 3.5 4

x-direction [m]

Figure 5.9: HyQ's performance using ViTAL under different commanded velocities.
The top two plots show the numerical difference of the body height and pitch (Az,
and Ay), and the bottom two plots show the tracking errors of the body height and
pitch.

workspace of HyQReal is larger than Hy(Q), this scenario was more feasible to
traverse for HyQQReal. Thus, Hy(QQReal was able to reach a higher commanded
velocity than the ones reported for Hy(Q).
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Figure 5.10: The difference between the VPA and the TBR in six experiments
(3 each). (A) The number of safe footholds corresponding to the robot pose.
(B,C) The body height and pitch tracking errors, respectively. Circles (o) and
crosses (x) are successful and failed trials, respectively. Unlike the VPA, the TBR
failed to climb the stairs because the TBR resulted in almost no safe footholds for
the four legs to reach.
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5.6.4 Comparing the VPA with a Baseline (Experiments)

We compare the VPA with another vision-based pose adaptation strategy: the
Terrain-Based Body Reference (TBR) [113]. The TBR generates pose references
based on the footholds selected by the VFA. The TBR fits a plane that passes
through the given selected footholds, and sets the orientation of this plane as
a body orientation reference to the robot. The elevation reference of the TBR
is a constant distance from the center of the approximated plane that passes
through the selected footholds. We chose the TBR instead of an optimization-
based strategy since the latter does not provide references that are fast enough
with respect to the VPA.

Using the stairs setup in Fig. 5.1(A), we conducted six experimental trials:
three with the VPA and three with the TBR. All trials were with the VFA. In all
trials, Hy(Q is commanded to crawl with a desired forward velocity of 0.1m/s.
The results are reported in Fig. 5.10 and Video 9. Figure 5.10(A) shows the
number of safe footholds corresponding to the robot pose from the VPA and
the TBR. The robot height and pitch tracking errors are shown in Fig. 5.10(B,C),
respectively.

As shown in Video 9, Hy(Q) failed to climb the stairs with the TBR, while
it succeeded with the VPA. This is because, unlike the VPA, the TBR does
not aim to put the robot in a pose that maximizes the chances of the legs to
succeed in finding safe footholds. As shown in Fig. 5.10(A), the number of safe
footholds from using the TBR was below the ones from using the VPA. During
critical periods when the robot was around Om in the x-direction, the number
of safe footholds from using the TBR almost reached zero. The low number of
safe footholds for the TBR compared to the VPA is reflected in the tracking of
the robot height and pitch as shown in Fig. 5.10(B,C) where the tracking errors
from the TBR were higher than the VPA.

The difference between the VPA and the TBR can be further explained
in Video 9. When the TBR is used, the robot is adapting its pose given the
selected foothold. But, if the selected foothold is not reached, or if there is a high
tracking error, the robot reaches a body pose that results in a smaller number
of safe footholds. Thus, the feet end up colliding with the terrain and hence the
robot falls. On the other hand, the VPA is able to put the robot in a pose that
maximizes the number of safe footholds. As a result, the feet found alternative
safe footholds to select from, which resulted in no collision, and succeeded in
climbing the stairs. The VPA optimizes for the number of safe footholds. Thus,
if there is a variation around the optimal pose (tracking error), the VFA still
finds more footholds to step on, which is not the case with the TBR.
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Figure 5.11: The difference between the VPA and the TBR in six simulations
(3 each). (A) The number of safe footholds corresponding to the robot pose.
(B,C) The body height and pitch tracking errors, respectively. Circles (o) and
crosses (x) are successful and failed trials, respectively. Unlike the VPA, the TBR
failed to climb the stairs because the TBR resulted in almost no safe footholds for
the four legs to reach.
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5.6.5 Comparing the VPA with a Baseline (Simulation)

Similar to experiments, and using the stairs setup in Fig. 5.6, we compare
the VPA with the TBR. We conducted six simulations: three with the VPA
and three with the TBR. All trials were with the VFA. In all trials, Hy() is com-
manded to trot with a 0.2m/s desired forward velocity. The results are reported
in Fig. 5.11 and Video 10. Figure 5.11(A) shows the number of safe footholds
corresponding to the robot pose from the VPA, and the TBR. The tracking
errors of the robot height and pitch are shown in Fig. 5.11(B,C), respectively.
These trials show that Hy(Q) failed to climb the stairs using the TBR, while it
succeeded using the VPA.

5.6.6 Climbing Stairs with Gaps

We show Hy(Q)’s capabilities of climbing stairs with gaps using ViTAL, and we
compare the VPA with the TBR. In this scenario, Hy() is commanded to trot
at 0.4m/s. Figure 5.12(A) shows overlayed screenshots of the simulation and
the used setup. Figure 5.12(B) shows the robot’s height and pitch based on
the VPA, and the corresponding feet trajectories of the LF leg and the RH leg
based on the VFA, and Fig. 5.12(C) shows the number of safe footholds using
the VPA and the TBR. Because of VITAL, Hy(Q) was able to climb the stairs with
gaps while continuously adapting its pose and feet. Furthermore, the number
of safe footholds from using the TBR is always lower than from using the VPA,
which shows that indeed the VPA outperforms the TBR. Video 11 shows the
output of this simulation using ViTAL.

5.6.7 Pose Optimization: Single vs. Receding Horizons

To analyze the differences between the receding horizon and the single horizon
in pose optimization, we use the stairs setup in Fig. 5.6 with a commanded
forward velocity of 0.4m/s, and report the outcome in Fig. 5.13 and Video 12.
The main advantage of using a receding horizon instead of a single horizon is
that the pose optimization can consider future decisions. Thus, if the robot
is trotting at higher velocities, the pose optimizer can adapt the robot’s pose
before hand. This can result in a better adaptation strategy with less variations
in the generated optimal pose. Thus, we analyze the two approaches by taking
a look at the variations in the body pose

, Az Ay

== and y=-L 5.26
=7 and y=1r (5.26)
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Figure 5.12: HyQ climbing gapped stairs. (A) Screenshots of HyQ climbing the
setup. (B) The robot's height and pitch based on the VPA, and the corresponding
feet trajectories of the LF and RH legs based on the VFA. (C) The number of safe

footholds using the VPA and the TBR.
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Figure 5.13: Pose Optimization: Single vs. Receding Horizons. (A) The num-
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(C) Variation (numerical difference) of the robot's pitch. (D) The tracking error of
the robot’s height.
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where 7, and y are the numerical differences (variations) of the robot height z,
and pitch y with respect to the robot forward position x;, respectively.

Figure 5.13 reports the differences between the two cases. The number of
safe footholds is shown in Fig. 5.13(A). The variations in Z, and y are shown
in Fig. 5.13(B,C), respectively. Finally, the tracking error of the robot’s height
is shown in Fig. 5.13(D). As shown in Figure 5.13 the receding horizon resulted
in less variations in the body pose compared to the single horizon. This resulted
in a smaller tracking error for the receding horizon in the body height, which
resulted in slightly larger number of safe footholds. All in all, the receding hori-
zon reduces variations in the desired trajectories which improves the trajectory
tracking response.

The differences between the receding and single horizon in the pose opti-
mization can also be noticed in Video 12. In the case of a single horizon, the
robot was struggling while climbing up the stairs but was able to recover and
accomplish the task. However, using the receding horizon, the robot was able
to adapt its pose in time, and thus resulting in safer footholds that allowed the
robot to accomplish the task.

5.6.8 Pose Optimization: Ciyn vs. Cint

To analyze the differences between Cguym and Ciyg in the pose optimization, we
use the stairs setup in Fig. 5.6 with a commanded forward velocity of 0.4m/s,
and report the outcome in Fig. 5.14. The main advantage of using Ci,; over
Csum is that Cyy will result in a pose that does not just maximize the number
of safe footholds for all of the legs, but also ensures that the number of safe
footholds of the poses around the optimal pose is still high. To compare the two
cost functions, we take a look at the number of safe footholds. In particular, we
evaluate the number of safe footholds corresponding to the optimal pose, and
the poses around it with a margin of m = 0.025m. Thus, in Fig. 5.14, we plot
the envelope (shaded area) between ?A‘(u* +m) and 7:“(u* —m) for both cases, and
the thickness between these envelopes which we refer to as error

error = |F(u* +m) - Fu* —m)|. (5.27)

As shown in Fig. 5.14 the envelope of the number of safe footholds resulting
from Ciy is almost always encapsulated by Cyum. The thickness (error) of the
number of safe footholds resulting from using Ciy is always smaller than Cgum.
This means that any variation of m in the optimal pose will be less critical if
Cint is used compared to Csym.
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Figure 5.14: Pose Optimization: Csum vs. Cint. The shaded areas are the envelopes
of the number of safe footholds. The lines are the thicknesses (errors) between these
envelopes.
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(E) (F)

Figure 5.15: HyQ traversing rough terrain and climbing stairs sideways. (A,B) HyQ
traversing rough terrain with and without ViTAL, respectively. (C,D) HyQ climbing
stairs while yawing (commanding the yaw rate) using ViTAL. (E,F) HyQ climbing
stairs sideways using ViTAL.
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5.6.9 Locomotion over Rough Terrain

We evaluate the performance of Hy() in traversing rough terrain as shown in
Fig. 5.15(A,B) and in Video 13. We conducted two simulations: one with ViTAL
and thus with exteroceptive and proprioceptive reactions (Fig. 5.15(A)), and an-
other without ViTAL and thus only with proprioceptive reactions (Fig. 5.15(B)).
Hy(Q was commanded to traverse the rough terrain with a forward velocity
of 0.2m/s. No hyper parameters re-tuning, or CNNs re-training were needed.

As shown in Video 13, Hy() was able to successfully traverse the terrain
in both cases. With ViTAL, HyQ collided less with the terrain and continu-
ously adapted its footholds over the small cobblestones. Without ViTAL, Hy(Q
traversed the rough terrain, yet, with significantly more effort. Additionally,
without ViTAL, Hy(Q continuously collided with the terrain, and in some inci-
dents, the feet got stuck. For this reason, we had to re-tune the gait parameters,
and increase the step height to reduce these incidents. The robot’s feet also kept
slipping since the feet were always close to edges and corners.

5.6.10 Climbing Stairs with Different Commands

Instead of commanding only forward velocities as in the previous sections, we
command HyQ) to climb the stairs with ViTAL while yawing (commanding the
yaw rate) as shown in Video 14 and Fig. 5.15(C,D), and to climb stairs laterally
as shown in Video 15 and Fig. 5.15(E,F). Climbing stairs sideways is more
challenging than facing the stairs since the range of motion of the robot’s roll
orientation is more restricted versus the pitch orientation. That said, because
of ViTAL, Hy(Q) was still able to climb these stairs in both cases as shown
in Video 14 and Video 15.

5.7 Conclusion

We presented ViTAL which is an online vision-based locomotion planning strat-
egy. ViTAL consists of the VPA for pose adaptation, and the VFA for foothold
selection. The VPA introduces a different paradigm to current state-of-the-
art pose adaptation strategies. The VPA finds body poses that maximize the
chances of the legs to succeed in reaching safe footholds. This notion of suc-
cess emerges from the robot’s skills. These skills are encapsulated in the FEC
that include (but are not limited to) the terrain roughness, kinematic feasibil-
ity, leg collision, and foot trajectory collision. The VFA is a foothold selection
algorithm that continuously adapts the robot’s trajectory based on the FEC.
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The VFA algorithm of this work extends our previous work in [120, 113] as well
as the state of the art [112, 117]. Since the computation of the FEC is usually
expensive, we rely on approximating these criteria with CNNs.

The robot’s skills and the notion of success provided by the FEC allowed
the VPA to generate body poses that maximize the chances of success in reaching
safe footholds. This resulted in body poses that are aware of the terrain and
aware of what the robot and its legs can do. For that reason, the VPA was
able to generate body poses that give a better chance for the VFA to select
safe footholds. As a result, because of ViTAL, Hy() and HyQReal were able
to traverse multiple terrains with various forward velocities and different gaits
without colliding or reaching workspace limits. The terrains included stairs,
gaps, and rough terrains, and the commanded velocities varied from 0.2m/s
to 0.75m/s. The VPA outperformed other strategies for pose adaptation. We
compared VPA with the TBR which is another vision based pose adaptation
strategy, and showed that indeed the VPA puts the robot in a pose that provides
the feet with higher number of safe footholds. Because of this, the VPA made
our robots succeed in various scenarios where the TBR failed.

5.8 Limitations and Future Work

One issue that we faced during experiment was in tracking the motion of the
robot, especially for HyQReal. We were using a WBC for motion tracking. We
believe that the motion tracking and our strategy can be improved by using
a Model Predictive Control (MPC) alongside the WBC. Similarly, instead of
using a model-based controller (MPC or WBC), we hypothesize that an RL-
based controller can also improve the robustness and reliability of the overall
robot behavior.

As explained in Section 5.5, one other key limitation was regarding the per-
ception system. State estimation introduced a significant drift that caused a
major noise and drift in the terrain map. Albeit not being a limitation to the
suggested approach, we plan on improving the state estimation and perception
system of Hy() and Hy(QQReal to allow us to test ViTAL in the wild.

The pose optimization problem of the VPA does not reason about the robot’s
dynamics. This did not prevent Hy() and HyQReal from achieving dynamic
locomotion while traversing challenging terrains at high speeds. However, we
believe that incorporating the robot’s dynamics into ViTAL may result in a
better overall performance. That said, we believe that in the future, the VPA
should also reason about the robot’s dynamics. For instance, one can augment

139



5.9. Implementation Details

the FEC with another criterion that ensures that the selected footholds are
dynamically feasible by the robot.

Additionally, in the future, we plan to extend the VPA of ViTAL to not
only send pose references, but also reason about the robot’s body twist. We
also plan to augment the robot skills to not only consider foothold evaluation
criteria, but also skills that are tailored to the robot pose. Finally, in this work,
ViTAL considered heightmaps which are 2.5D maps. In the future, we plan to
consider full 3D maps that will enable ViTAL to reason about navigating in
confined space (inspired by [114]).

5.9 Implementation Details

5.9.1 CNN approximation in the VFA and the VPA

In the VFA, the foothold evaluation stage is approximated with a CNN [132]
as explained in Remark 5.3. The CNN approximates the mapping between Ty,
and p.. The heightmap Hyg, in Ty, passes through three convolutional layers
with 5 x 5 kernels, 2 x 2 padding, Leaky ReLU activation [133], and 2 X 2 max-
pooling operation. The resulted one-dimensional feature vector is concatenated
with the rest of the variables in the tuple Tyt,, namely, zj, vy, @, and p,. This
new vector passes through two fully-connected layers with Leaky ReLU and
softmax activations. The parameters of the CNN are optimized to minimize the
cross-entropy loss [134] of classifying a candidate foothold location as optimal p,.

In the VPA, the pose evaluation and the function approximation is ap-
proximated with a CNN as explained in Remark 5.5. The CNN infers the
weights w of F given Typ, (the mapping between Typ, and w). The heightmap
Hypa € R33%33 passes through three convolutional layers with 5 x 5 kernels, 2 x 2
padding, Leaky ReLLU activation, and 2 X 2 max-pooling operation. The body
velocities v, pass through a fully-connected layer with Leaky ReLU activation
that is then concatenated with the one-dimensional feature vector obtained from
the heightmap. This new vector passes through two fully-connected layers with
Leaky ReLU and linear activations. The parameters of this CNN are optimized
to minimize the mean squared error loss between the number of safe footholds ng¢
predicted by ?z‘(zh, w) and F (zn, w) where w are the function parameters approx-
imated by the CNN.

For both CNNs, we used the Adam optimizer [135] with a learning rate of
0.001, and we used a validation-based early-stopping using a 9-to-1 proportion
to reduce overfitting. The datasets required for training this CNNs are collected
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Figure 5.16: An illustration of the Function Approximation of the VPA.

by running simulated terrain scenarios that consist of bars, gaps, stairs, and
rocks. In this work, we considered a 33 X 33 heightmap with a resolution of
0.02m (Hyga, Hypa € R3333).

5.9.2 Details on the Function Approximation of the VPA

As explained in Section 5.4.4, the function F (zh; W)

E
7—N(Zhi’ W) = Z We : g(Z/’li’ 267 Ce) (528)
e=1

is defined as the weighted sum of Gaussian basis functions
g(zhi, 26, Ce) = eXp(_O'5(Zhi - ce)TZejl(Zhi - Ce))' (529)

The parameters X, and ¢, are the widths and centers of the Gaussian func-
tion g, (see Section 3.1 in [64]). In the literature, ¢, is usually referred to as the
mean or the expected value, and X, as the standard deviation. The regression
algorithm should predict the weights w,, and the parameters X, and c,. To
reduce the dimensionality of the problem, as explained in Section 5.4.4, and
in Section 4.1 in [64], we decided to fix the values of the parameters of the
Gaussian functions X, and c.. In detail, the centers ¢, are spaced equidistantly
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within the bounds of the hip heights z;,, and the widths are determined by
the value at which the Gaussian functions intersect. That way, the regression
algorithm only outputs the weights w,. Figure 5.16 shows an example of the
function approximation. In this example, the bounds of the hip heights z;, are
0.2m and 0.8m. Assuming a number of basis functions E = 3, the centers c,
are then chosen to be equidistant within the bounds, and thus, the centers c,
are 0.2m, 0.3m and 0.8 m. By choosing the Gaussian functions to intersect at
0.5, the widths X, are 0.13.

5.9.3 Representing the Hip Heights in terms of the Body Pose

To represent the hip heights in terms of the body pose, we first write the forward
kinematics of the robot’s hips

P =p) + R)D) (5.30)

where py € R3 is the position of the hip of the ith leg in the world frame,

pZV € R? is the position of the robot’s base in the world frame, RZV € SO(3) is
the rotation matrix mapping vectors from the base frame to the world frame,
and pz. € R? is the position of the hip of the ith leg in the base frame. The

rotation matrix RZV is a representation of the Euler angles of the robot’s base
with sequence of roll B, pitch y, and yaw ¢ (Cardan angles) [136]. The variable
pfl_ is obtained from the CAD of the robot. Expanding (5.30) yields

W F W b
2, 12, | z,
x% xéi
ol R R | (5.32)
2| =Sy ey sB ey Bk

L

where s and ¢ are sine and cosine of the angles, respectively. Since we are
interested only in the hip heights, the z-component (third row) of (5.32) yields

Z}Z =z - xgisy + yZl_cys,B + zzicycﬁ. (5.33)
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5.9.4 Defining the Receding Horizon

In the receding horizon there is a tuple Typ,; for every jth horizon that is
defined as
Tvpa,j = (vaa,ja Vb, CY) (534)

hence sharing the same body twist v, and gait parameters a but a different
heightmap Hyp, ;. For every leg, a heightmap of horizon j+1 is overlapping with
the previous horizon’s j heightmap. This overlap has a magnitude of Ah taking
the same direction as the body velocity x;,. Without loss of generality, we chose
the magnitude of the overlap to be half of the diagonal size of the heightmap in
this work. To sum up, we first gather Typ, ; that share the same v, and @, but
a different Hyp,a ;. Then, we evaluate Typ,a; and approximate the output using
the function approximation yielding 92; that is sent to the optimizer for all of
the legs.

5.9.5 Miscellaneous Settings

In this work, all simulations were conducted on an Intel Core i7 quad-core
CPU, and all experiments were running on an onboard Intel Core i7 quad-core
CPU where state estimation, mapping, and controls were running. The RCF
(including the WBC) runs at 250 Hz, the low-level controller runs at 1000 Hz,
the state estimator runs at 333 Hz, and the mapping algorithm runs at 20 Hz.
The VPA and the VFA run asynchronously at the maximum possible update
rate.

ViTAL is implemented in Python. The CNNs are implemented in Py-
Torch [137]. As explained in Section 5.9.1, in this work, we considered a
33 x 33 heightmap with a resolution of 0.02m (Hyfa, Hypa € R3333). The finite
set Z consisted of a hip height range between 0.2m and 0.8 m with a resolution
of 0.02m yielding N;, = 31 samples. The number of radial basis functions used
in the function approximation was E = 30. The pose optimization problem is
solved with a trust-region interior point method [138, 139] which is a non-linear
optimization problem solver that we solved using SciPy [140]. The bounds of
the pose optimization problem wupi, and upyax are [0.2m, —0.35rad, —0.35rad],
and [0.8m, 0.35rad, 0.35 rad], respectively. We used a receding horizon of N, = 2
with a map overlap of half the size of the heightmap. For a heightmap of a size
of 33 x 33 and a resolution of 0.02m, the map overlap Ah is 0.33m. We used
Gazebo [141] for the simulations, and ROS for communication.
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5.9.6 Estimation Accuracy

We compare the estimation accuracy of the VFA by comparing the output of
the foothold evaluation stage (explained in Section 5.3) given the same input
tuple Tyf,. That is to say, we compare the estimation accuracy of the VFA
by comparing g(Tyt,) versus g(Tye.) (see Remark 5.3). To do so, once trained,
we generated a dataset of 4401 samples from randomly sampled heightmaps for
every leg. This analysis was done on HyQ).

As explained in Section 5.3, from all of the safe candidate footholds in pgafe,
the VFA chooses the optimal foothold to be the one closest to the nominal
foothold. Thus, to fairly analyse the estimation accuracy of the VFA, we present
three main measures: perfect match being the amount of samples where g(Ty,)
outputted the exact value of g(Tyta), safe footholds, being the amount of samples
where g(Tyt,) did not output the exact value of g(Tyf,), but rather a foothold
that is safe but not closest to the nominal foothold, and mean distance, being
the average distance of the estimated optimal foothold from g(Ty¢,) relative to
the exact foothold from g(Tyf). These measures are presented as the mean of
all legs.

Based on that, the perfect match measure is 74.0%. Thus, 74% of &(Tyf.)
perfectly matched g(Tys,). The safe footholds measure is 93.7%. Thus, 93.7% of
8(Tyf,) were deemed safe. Finally, the mean distance of the estimated optimal
foothold from g(Ts,) relative to the exact foothold from g(Tyg,) is 0.02m. This
means that, on average, g(Tyt,) yielded optimal footholds that are 0.02m far
from the optimal foothold from g(7y,). Note that, the radius of HyQ)’s foot, and
the resolution of the heightmap is also 0.02m, which means that the average
distance measure is still acceptable especially since we account for this value in
the uncertainty margin as explained in Remark 5.1.

Similar to the VFA, we compare the accuracy of VPA by comparing the
output of the pose evaluation stage (explained in Section 5.4.3) given the same
input tuple Ty,. That is to say, we compare the estimation accuracy of the VPA
by comparing ¥ versus F (see Remark 5.4 and Remark 5.5). To do so, we ran
one simulation using the stairs setup shown in Fig. 5.6 on Hy(), and gathered the
input tuple Tygy. Then, we ran the VPA offline, once with the exact evaluation
(vielding ) and once with the approximate one (yielding F).

Based on this simulation run, the mean values of the exact and the approx-
imate evaluations are mean(¥) = 1370 and mean(fj) = 1322, respectively. This
yields an estimation accuracy mean(f’ )/mean(F) of 96.5%.

144



5.9. Implementation Details

5.9.7 Computational Analysis

To analyze the computational time of the VFA and the VPA, we ran one sim-
ulation using the stairs setup shown in Fig. 5.6 on Hy() to gather the input
tuples of the VFA and the VPA, Ty, and Typa, respectively. Then, we ran both
algorithms offline, once with the exact evaluation and once using the CNNs, and
collected the time it took to run both algorithms (all stages included). The mean
and standard deviation of the time taken to compute the exact and the CNN-
approximated VFA (per leg) algorithms are 7.5ms + 1 ms, and 3.5ms + 1 ms,
respectively. The mean and standard deviation of the time taken to com-
pute the exact and the CNN-approximated VPA algorithms are 720 ms + 68 ms,
and 180 ms + 60 ms, respectively. Hence, the VFA and the VPA can run at
roughly 280Hz and 5 Hz, respectively. This also shows that the CNNs can
speed up the evaluation of the VFA and the VPA up to 4 times and 2 times,
respectively.

Note that it takes longer to compute the VFA of this work versus our previous
work [113]. This is because the VFA of this work considers more inputs than
in our previous work, and thus, the size of the CNN is larger. As can be seen,
the VPA runs at a relatively lower update rate compared to the VFA. We believe
that this is not an issue since the VFA runs at the legs-level while the VPA runs
as the body-level which means that the legs experience faster dynamics than
the body.

During simulations and experiments, the CNNs were running on a CPU. A
significant amount of computational time can be reduced if we run the CNNs
of the VFA and the VPA on a GPU. Likewise, a significant amount of com-
putational time can be reduced if a different pose optimization solver is used.
However, both suggestions are beyond the scope of this work, and are left as a
future work.

145



5.9. Implementation Details

146



Conclusion

6.1 Summary

Terrain-Aware Locomotion (TAL) is an essential element to achieve Athletic
Intelligence (Atl) for legged robots. For that to happen, legged robots should be
able to perceive, understand, and adapt to their surrounding terrain using their
proprioceptive and exteroceptive (visual) information. This thesis presented
TAL strategies, both at the proprioceptive and vision-based level. The first
part (Chapters 2-4) was on Proprioceptive Terrain-Aware Locomotion (PTAL)
strategies and the second part (Chapter 5) was on Exteroceptive Terrain-Aware
Locomotion (ETAL) strategies.

In Chapter 2, we presented a PTAL strategy that made legged robots adapt
to the terrain inclination and frictional properties. We presented a Passive
Whole-Body Control (pWBC) framework for quadruped robots where the loco-
motion control problem was casted as a Quadratic Program (QP) that took into
account the full robot rigid body dynamics, the actuation limits, the joint kine-
matic limits and the contact interaction. The contact interaction included the
terrain’s inclination (normals), frictional and unilaterality properties, and the
rigid contact interaction, and were encoded in the QP formulation. We encoded
the terrain inclination, frictional properties, and the rigid contact interaction in
the QP formulation. As a result, the quadruped robot was able to reliably tra-
verse various challenging terrains with different friction coefficients, and under
different gaits.

In Chapter 3, we presented a PTAL strategy that made legged robots adapt
to soft terrain. We introduced the Soft Terrain Adaptation alNd Compliance
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Estimation (STANCE) approach that extended capabilities of the previously
presented pWBC in Chapter 2. STANCE consisted of a Compliant Contact
Consistent Whole-Body Control (c?WBC) and a Terrain Compliance Estimator
(TCE). The TCE provided the c*WBC with the current terrain impedance that
the c>WBC then used to adapt the robot’s motion accordingly. As a result, the
quadruped robot was able to differentiate between compliances under each foot,
and to adapt online to multiple terrains with different compliances (rigid and
soft) without pre-tuning.

In Chapter 4, we looked into one of the remaining limitations of locomotion
over soft terrain. We were able to investigate how and why does soft terrain
affect state estimation for legged robots. As a result, we showed that soft terrain
negatively affects state estimation for legged robots, and that the state estimates
have a noticeable drift over soft terrain compared to rigid terrain.

In Chapter 5, we presented a Vision-Based Terrain-Aware Locomotion (Vi-
TAL) strategy consisting of a Vision-Based Pose Adaptation (VPA) algorithm
that introduced a paradigm shift for pose adaptation strategies, and a Vision-
Based Foothold Adaptation (VFA) algorithm that extended state-of-the-art
foothold selection strategies. Instead of the commonly used pose adaptation
techniques that optimizes body poses given the selected footholds, we proposed
to find body poses that maximizes the chances of reaching safe footholds. This
was done by relying on a set of robots skills that represented the capabilities of
the robot and its legs. The skills were then learned via self-supervised learning
using Convolutional Neural Networks (CNNs). ViTAL allowed our robots to se-
lect the footholds based on their capabilities, and simultaneously find poses that
maximize the chances of reaching safe footholds. As a result, our quadruped
robots were able to traverse stairs, gaps, and various other terrains at different
speeds.

We believe that the contributions of this thesis allows legged robots to tra-
verse a wider range of terrains with different geometries and physical properties.
We believe that this would not have been possible without exploiting the robot’s
proprioceptive and exteroceptive (visual) information.

6.2 Future Directions

The contributions of this thesis allowed us to advance in many research direc-
tions, yet, there remains many further improvements in these research directions.
Below, we provide pointers to where we believe these improvements should be

going.
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Whole-Body Control

e Whole-Body Control (WBC) is still an active topic in research. Perhaps
one promising direction is the use of control Lyapunov function based QP.
This approach has shown a rapid convergence compared to the standard
WBC formulations [142]. Yet, further validation of the approach should
be done to show its capabilities in more challenging terrains and different
gaits.

e WBCs are model-based optimization approaches that rely on inverse dy-
namics. Hence, one possible direction is to improve the robot dynamics
model using model learning techniques. The hybrid nature of floating
based systems makes it harder to learn its inverse dynamics. One ap-
proach is to learn the errors between the dynamics model and the actual
dynamics (the residual in the dynamics) of the legged robot [143].

e There are other challenges in WBC in specific scenarios. One challenge is
when the robot loses contact or if the robot gets lifted up. The current
WBC formulations cannot handle this case. Thus, some implementations
still rely on a joint-level PD loop albeit not being used in our work. Per-
haps one way to improve this is to add constraints regarding the stance
feet. These constraints would keep the stance feet close to the robot base,
thus, if the robot gets lifted, the feet do not move away from the base.

Soft Terrain Adaptation

e As mentioned in Chapter 3, there are various research directions in loco-
motion over soft terrain mainly in state estimation and low-level control.
The former was tackled in Chapter 4 while the latter is not yet tackled.
With this in mind, we believe there is great potential improvements of low-
level control to generalize beyond rigid terrain. As a first step, perhaps
there should be a formal discussion on the effects of soft terrain on the
low-level control, and possible ideas on how to improve the performance
of the low-level control to adapt to terrains with different impedances.

e The c*WBC presented in Chapter 3 was superior to the Standard Whole-
Body Control (sWBC). As we mentioned in Chapter 3, the differences
between these two controllers were more evident under dynamic motions.
Perhaps other WBCs could perform better than the sWBC and the c>WBC
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under slower motions. Hence, it might be of great potential to compare
the c*WBC with the controllers mentioned in [144].

e The TCE presented in Chapter 3 relied on the Kelvin-Voigt’s (KV) model
which is linear springs and dampers parallel and perpendicular to the con-
tact point. As we reported in Chapter 3, we chose this model because
it was simple, and it is computationally inexpensive. Based on that, we
believe there is a lot of work to do in that aspect. First, it is perhaps im-
portant to analyze the trade-off between using a more complicated model
(non-linear) that is slower to estimate its parameters versus a simpler
model that is faster to compute.

e STANCE is implemented at the WBC level which resulted in the controller
being compliant contact consistent (c?). One possible extension is to ex-
ploit the work of STANCE to also make Model Predictive Control (MPC)
c?. For that, the MPC optimization problem should be re-formulated to
take into account the terrain impedance parameters.

State Estimation

Although this thesis was not fundamentally focusing on state estimation, we
believe that state estimation is crucial in TAL. TAL mandates an accurate
estimate of the robot states as well as the map of the environment (terrain).

As we mentioned in Chapter 4, the performance of state estimation degrades
on soft terrain. This is because state estimators still rely on rigid body assump-
tions mainly in leg odometry. One way to deal with that is to have a velocity
bias in leg odometry. This velocity bias should be adaptive and not constant
since it depends on the type of terrain and on the gait used. Perhaps another
way to deal with this is to reformulate the leg odometry module and augment
it with the terrain impedance knowledge.

Vision-based Terrain Aware Locomotion

We believe that our work on ViTAL and specifically the VPA algorithm intro-
duced a different way of thinking and of approaching pose adaptation problems.
This opened more research questions and a lot of possible improvements. Vi-
TAL’s core idea is to teach the robot a set of skills. These skills were encapsu-
lated by the Foothold Evaluation Criteria (FEC). Perhaps the most important
future work in that aspect is to augment the robot with skills that are tailored
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to the robot’s pose and not just the legs. For example, the skills can include the
robot’s ability to traverse confined spaces (inspired from [114]). Furthermore,
in Chapter 5, we reported that we faced some issues during experiment. These
issues were mainly in tracking the motion of the robot especially for HyQReal.
Thus, a possible way to improve this is to use the MPC controller in [124].
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