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Abstract—Legged robots are able to navigate complex terrains
by continuously interacting with the environment through careful
selection of contact sequences and timings. However, the combi-
natorial nature behind contact planning hinders the applicability
of such optimization problems on hardware. In this work, we
present a novel approach that optimizes gait sequences and
respective timings for legged robots in the context of optimization-
based controllers through the use of sampling-based methods
and supervised learning techniques. We propose to bootstrap the
search by learning an optimal value function in order to speed-up
the gait planning procedure making it applicable in real-time. To
validate our proposed method, we showcase its performance both
in simulation and on hardware using a 22 kg electric quadruped
robot. The method is assessed on different terrains, under external
perturbations, and in comparison to a standard control approach
where the gait sequence is fixed a priori.

Index Terms—Legged robots, gait adaptation, supervised
learning.

I. INTRODUCTION

LEGGED robots traverse the world by making and breaking
contacts with the environment. In doing so, they need

to decide over a set of discrete and continuous optimization
variables, e.g., the sequence of end-effectors establishing
contact (discrete) and the contact timings and forces (con-
tinuous). Classically, the switching nature of the problem
has been relaxed to cast the motion planning problem as a
general nonlinear program (NLP) [1], [2], [3]. However, these
approaches are prone to poor local minima and they usually
need a good warm-start to yield physically plausible trajectories.
Hence, they have shown little success in the real world [4],
[5]. Recent works have focused on handling contact as an
explicit phenomenon formulating an optimization problem with
a mixture of continuous and discrete optimization variables.
While recent advances have enabled solving the continuous
optimization for a given contact sequence in a receding horizon
fashion [6], [7], [8], solving the hybrid problem online is still
out of reach.
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One interesting approach to solve the hybrid optimization
problem is to cast it as a Mixed-Integer Program (MIP) [9]
for kinematically feasible footstep planning on uneven terrain.
Several extensions of this algorithm were later proposed to solve
for the gait sequence [10], or to include the robot dynamics [11].
All of these works used a convex relaxation of the dynamics
and environment geometry to make a fast resolution of the
problem tractable. Later works have tapped into relaxing the
integer optimization to an L1 norm minimization problem [12]
and managed to solve the problem of contact patch selection
in real-time for quadrupedal locomotion [13]. However, in the
general case of nonlinear dynamics and complex geometry
of the environment, solving a non-convex MIP is an NP-hard
problem and existing solvers do not scale well with the number
of discrete decision variables.

In [14], the authors demonstrated the potential of using
supervised learning to determine the contact scheduling and
positioning for a quadrupedal robot. Recent advancements
in Reinforcement Learning (RL) offered a novel point of
view on the timing problem. RL-based controllers do not
explicitly tackle the problem of contact timing. Instead, during
the learning process, they automatically discover behaviors that
involve changes in contacts embedding them in the network
representation [15]. Nevertheless, most RL-based controllers
incorporate a gait timer as an input to the network, which
imposes a bias on the selected contact pattern [16]. While
these approaches have shown incredible performance on real
hardware, heavy reward engineering is required to generate
new motions and an ad-hoc domain randomization procedure
is required for successful sim-to-real.

As reviewed above, MIP-based approaches efficiently use
the knowledge about dynamics, geometries, and constraints
of both the robot and the environment to generate robot
motions in various scenarios. Although uncertainties can be
taken into account to achieve a robust MIP-based controller,
generating complex movements is not straightforward. RL-
based approaches, instead, can achieve complex behaviors to
tackle very challenging scenarios. However, they do not take
into consideration the knowledge about the structure of the
problem and rely on sampling in simulation to find optimal
control policies. To benefit from the power of each method, a
framework that can efficiently use the structure of the problem
and use machine learning to reduce the online computation is
required. One approach is to use continuous RL algorithms for
contact planning [17], [18]. However, these approaches ignore
this structure in which the contact planning problem is mostly
a decision-making process over discrete variables.
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Fig. 1. Control block diagram of the proposed approach based on the previous
work [19]. The green block is executed at 12.5 Hz, the blue block at 250 Hz,
and the orange block at 1K Hz.

Monte-Carlo Tree Search (MCTS) has recently emerged and
shown promise as an alternative to solve the hybrid optimization
problem for locomotion [19] and object manipulation [20].
Both of these works have shown that MCTS can dramatically
reduce the computation time in comparison with MIP, while
slightly compromising the optimality of the solution. Recently,
[21], [22] used a MCTS formulation to select which surface
to step onto, among all steppable surfaces. However, none of
these works have managed to run MCTS in real-time on real
hardware to adapt the discrete optimization variables reactively.

In this work, we propose a novel approach that builds on
[19] that leverages MCTS to optimize the gait sequence and
timings for quadrupedal locomotion, combining it with offline
learning [23], [24], [25] to make it applicable in real-time. In
particular, our core contributions are the following:

• We introduce a simple and effective learning-based strategy
to enhance the real-time capability of an MCTS algorithm
for the purpose of non-gaited locomotion.

• We carry out an extensive analysis of the MCTS parame-
ters and their influence on the robot’s performance.

• We demonstrate, to the best of our knowledge, the first-
ever successful real-time implementation of a sampling-
based method for non-gaited locomotion on a real
quadruped robot.

The rest of the paper is organized as follows: Sec. II
introduces the vanilla MCTS algorithm, providing a foundation
and context for our research. Sec. III presents a detailed and
extensive analysis of the MCTS parameters analyzing their
impact on the robot’s performance. In Sec. IV, we describe how
supervised learning can be used in combination with MCTS
to enable real-time execution in the real world. Section V
presents the simulation and experimental results, showcasing
the approach on an electric quadruped robot. Finally, Sec. VI
concludes the paper, summarizing our findings and suggesting
directions for future research.

II. GAIT PLANNING USING MCTS

In this section, we present the MCTS gait planning architec-
ture and describe how the MCTS iterative steps are adapted in
the context of contact planning for controlling a multi-legged
system. For the remainder of this paper, when referring to
the terms gait planning or contact planning we mean in both
occasions the optimization of both the contact sequence and
respective contact timings of the end-effectors.
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Fig. 2. MCTS search process [19] augmented with learned value function
evaluation. Selection: starting from the root node, a tree traversal is executed
to find the node with the lowest cost. Expansion: the selected node’s children
that respect the MCTS constraints are added to the search tree. Simulation: the
expanded nodes are assigned a prediction cost by solving several optimization
problems and/or evaluating a learned value function network. Backpropagation:
the assigned prediction costs are backpropagated recursively to update the
node’s ancestors’ costs.

The proposed pipeline is shown in Fig. 1. A Model Predictive
Control (MPC) framework receives, as input, a reference
velocity from the user and an optimized gait sequence from
the MCTS gait planner. The input velocity is used to generate
the reference trajectory for the robot’s base, while the gait
sequence is used to generate the reference stepping locations
and regulate the respective contact timings. The MPC and
Whole-Body Control (WBC) are then responsible for producing
the desired joint torques to track the references.

The gait planning problem is formulated as a Markov
Decision Process (MDP). The MDP state s describes the contact
state of the system and it includes each end-effector contact
status, swing time, and stance time. The contact status is defined
as a binary value identifying if the end-effector is in contact
or not. The swing and stance times are continuous variables
that identify for how long the end-effector has been out-of-
contact (i.e. in swing) or in contact (i.e. in stance). The action
a, causing a state transition s’ = f(s, a), selects the next contact
status among the feasible contacts (Sec. II-B), thereby also
modifying the respective swing or stance timings. Each state
is assigned a prediction cost P (s) specifying the expected cost
to go if such a state is selected.

The MCTS algorithm is used to solve the MDP and
to optimize the gait sequence. Starting from a root node,
describing the current contact state of the system, a search
tree is created where each child node corresponds to a contact
choice. At each iteration, the tree grows and deeper nodes in
the tree constitute different contact plans up to a specified time
horizon. The MCTS search process is shown in Fig. 2 and is
briefly described in the remainder of this section. The MCTS
algorithm terminates upon convergence, which is reached when
a terminal node is selected during the MCTS selection process.
A node n is terminal if its depth matches the MCTS planning
horizon.

A. Selection

In the selection step, MCTS chooses which node to expand
and explore next. This is a crucial part of the iterative process
and is subject to the exploitation-exploration trade-off. More
precisely, when deciding the next expansion direction the
process should balance between favoring the most promising
node for a faster convergence or exploring other possibilities.
In this work, as in [19], we select the node to expand next
based on the lowest Lower Confidence Bound (LCB) which



3

incentivizes the exploration of nodes that are less visited in
the tree. More precisely, the more a node is simulated, the
smaller the difference between the LCB score and the node’s
average prediction cost becomes, where the latter is obtained
by performing multiple MPC rollouts (Sec. II-C). On the other
hand, the fewer times a node is simulated, the higher the
discount on the cost, incentivizing its selection for exploration.

B. Expansion

In the expansion step, the children of the selected node are
added to the tree, each representing a potential contact state
transition. For a legged system with m legs, the number of
children is 2m since each leg can either be in contact or not.
However, because we use a simplified SRB model in the MPC
(Sec. II-C), the leg dynamics are ignored, potentially leading
to fast swing motions or short stance phases. To prevent this,
we impose swing and stance time constraints during expansion.
If a leg’s swing or stance time has not reached the minimum
threshold, only child nodes that maintain the current swing or
stance state are added, reducing the number of children. In this
work, the minimum swing and stance times are set to 0.24 s
and 0.16 s, respectively.

C. Simulation & Backpropagation

In the simulation step, each expanded node n is assigned a
prediction cost P̄n, which guides the MCTS search. To compute
this cost, multiple MPC rollouts are solved for different gait
sequences. For a given node ni, we retrieve its contact sequence.
If incomplete, we fill the sequence by sampling contacts from
a uniform distribution that meets swing and stance constraints.
This sampling is repeated multiple times to obtain a more
reliable average cost. Each sequence is evaluated, in parallel,
by solving an Optimal Control Problem (OCP) for a simplified
SRB model, following the MPC formulation from [26]. Our
state and control vectors are defined as follows:

x = [pc, v̇c,Φ,ωb] ∈ R12,

u = [f1,f2,f3,f4] ∈ R12

where pc ∈ R3 and v̇c ∈ R3 are respectively the position
and the linear velocity of the Center of Mass (CoM); Φ ∈ R3

is the base angular position (roll, pitch, and yaw); ωb ∈ R3 is
the base angular velocity in the base frame, and f i ∈ R3 the
respective Ground Reaction Force (GRF) for the ith robot’s
foot. All the quantities, if not specified, are expressed in the
world frame.

The cost of the OCP is defined as the combination of
quadratic tracking and regularization terms, described as
follows:

P̃ =

N∑
k=0

(
∥exk

∥Qx
+ ∥euk

∥Ru

)
h (1)

where e(.,k) is the error with respect to the reference state
and control at the kth prediction step, and Qx and Ru are
diagonal weighting matrices.

Finally, the dynamic model is defined as


ṗc

v̇c

Φ̇

ω̇b

 =


vc

1/m
∑4

i=1 δif i + g

E′−1(Φ)ωb

−I−1
c

(
ωb × Ic

)
ωb +

∑4
i=1 δiI

−1
c ri × f i


(2)

with m characterizing the robot mass subjected to gravita-
tional acceleration g and I ∈ R3×3 the constant inertia tensor
centered at the robot’s CoM; E′−1 is a mapping from the
SRB angular velocity to Euler rates; and the displacement
vector between the CoM position pc and the ith robot’s foot
pf,i is defined as ri = pf,i − pc ∈ R3. Binary variables
δi = {0, 1} indicate whether an end-effector makes contact
with the environment, and can produce interaction forces, or
not. These variables are extracted from the simulated gait
sequence. Finally, friction cone constraints are added to the
optimization problem to limit the maximum and minimum
GRF and avoid foot slippage. We define the QP problem to
be solved starting from the cost function in (1) and imposing
as equality constraint the discretized and linearized version of
the dynamics in (2), while as inequality constraint we impose
the outer pyramid approximation of the friction cones. Once
P̃ is computed by solving the QP, we update the prediction
cost for each node n that is simulated as follows:

P̄n =

∑M
m=1

(
P̃m +

∑L
l=1 λ(Tswr − Tsw,l)

)
M

(3)

where M is the number of times we solve the QP with
different randomly completed contact sequences. We observed
that by using only the cost P̃ , the MCTS tends to choose in
most cases the fastest allowed swing time. This behavior arises
because the SRB model does not consider any component of
the leg dynamics. To overcome this limitation, we included an
additional discrete cost to drive each leg’s swing time Tsw,l

towards a reference swing time Tswr . The constant λ balances
between faster and slower swing timings. Increasing the value
of λ makes the MCTS solution track the reference frequency
making it less prone to show any contact timing adaptation
in response to disturbances. As described in Sec. III-A, the
value M is critical for the success of the algorithm. Due to
its sampling-based nature, performing few simulations can
lead to inaccurate prediction costs, whereas too many random
sequences can lead to the impossibility of solving the MCTS
algorithm within the replanning time budget.

In the backpropagation step, the prediction cost of each
simulated node is propagated back to the respective parent
node in a recursive fashion until the root node is reached.
Propagating the cost back is important to improve the accuracy
of the estimated cost for nodes closer to the root one.

III. MCTS PARAMETRIZATION

There are four main parameters that can affect the optimality
of the planned gait sequence and the respective motion
performance of the system. In this section, we present the
quantitative evaluation of each parameter’s influence on the
MCTS solution used to determine our parameter choices. These
are:
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Fig. 3. Comparison of the mean MPC tracking cost for different tree
discretizations and increasing number of simulations while disturbing the
system along different swing phases with a force of 150 N for 100 ms.
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Fig. 4. Comparison of the mean MCTS computation time for different tree
discretizations and increasing number of simulations while disturbing the
system along different swing phases with a force of 150 N for 100 ms.

• Number of Simulations: this is the number of times an
incomplete gait sequence is randomly filled and the OCP
described in Sec. II-C is solved.

• Tree Discretization: the time resolution for each node’s
contact status, indicating the duration for which a specific
contact status is maintained.

• Tree Horizon: the length of the time horizon over which
the gait sequence is optimized.

• Replanning Frequency: the rate at which the gait sequence
is updated per second.

To evaluate the parameters’ importance, we compare their
influence on the MPC tracking cost in simulation using the
RaiSim physics engine [27]. The evaluations were conducted
using the Aliengo robot model, a quadrupedal robot weighing
22 kg and measuring 65cm in length. In these evaluations, the
robot is tasked with tracking a reference forward velocity of
0.3 m/s while being laterally disturbed by a force of 150 N
for 100 ms every 3 s. The disturbances are applied 50 times
at five different instances of the swing phase (0%, 20%, 40%,
60%, 80%). Unless stated otherwise, we assume a tree horizon
value of 0.64 s for the presented evaluations.

A. Number of Simulations & Tree Discretization

Figure 3 shows the MPC tracking cost for different MCTS
tree discretization time dt (0.16 s, 0.08 s, 0.04 s) and the
number of MPC rollouts (5, 15, 30, 60, 120) performed at
each node expansion. The tree discretization values are chosen
to be multiples of 0.04 s, which is the MPC discretization
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Fig. 5. Comparison of the mean MPC tracking cost for a tree discretization
dt of 0.08 s, 120 MPC rollouts, and different tree horizons while disturbing
the system along different swing phases with a force of 150 N for 100 ms.

timestep, in order to ease the contact sequence conversion
from the MCTS gait sequence to the MPC gait sequence.

Figure 3 highlights how large discretization time leads to
very high MPC tracking costs, mainly due to the large model
inaccuracies induced by the larger dt. Using a dt that is twice
as large as the MPC’s discretization performs worse than using
a dt that matches the one of the MPC when the number of
simulations is low. However, as the number of simulations
increases, the performance of the two discretizations becomes
almost identical. Figure 3 also presents evidence that a high
number of simulations during the MCTS gait planning leads
to better performance. This is due to a better cost estimate for
the nodes as they are less sensitive to cost outliers brought by
the random nature of the sampling process.

The number of simulations and the tree discretization not
only affect the MPC tracking cost but also the computation
time required for the algorithm to converge. Figure 4 shows
how larger computation times are associated with a higher
number of simulations and smaller tree discretizations. The
higher number of MPC rollouts increases the convergence time
due to the increasing number of QP problems that must be
solved to evaluate the final cost associated with every node.
The tree discretization time directly affects the MCTS depth,
since the smaller the discretization time the higher the number
of nodes that must be evaluated during the search.

Based on the MPC tracking cost shown in Fig. 3, we select
0.08 s and 120 as the best tree discretization time and number of
MPC rollouts for the MCTS gait planning process, respectively.

B. Tree Horizon

Figure 5 shows the influence of the tree horizon parameter
on the MPC tracking cost when using a tree discretization
of 0.08 s and 120 MPC rollouts. We can observe that longer
horizons marginally change the cost, hinting at the fact that
longer horizon plans are not crucial, as shown in [28], as long
as fast replanning is carried out (Sec. III-C). This conclusion
may be task-dependent. In fact, while the reduced model’s
approximation is dominant in the tested scenarios, for cases
where the robot must execute long flight phases, such as sparse
stepping stones, a longer horizon could become crucial.
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Fig. 6. Comparison of the mean MPC tracking and prediction cost for a tree
discretization dt of 0.08 s, 120 MPC rollouts, and increasing MCTS planning
frequencies while disturbing the system along different swing phases with a
force of 150 N for 100 ms.

C. Replanning Frequency

As previously shown in Sec. III-A, a high number of
simulations is important to obtain a good cost estimate for
the nodes. However, the higher the number of simulations
the higher the time to complete the MCTS planning process.
Therefore, it is important to establish the minimum replanning
frequency that should be respected to maintain the best MPC
tracking cost performance established in Sec. III-A. To do so,
we evaluate the influence that different replanning frequencies
have on the MPC tracking cost. Since we evaluated the MCTS
gait planner with frequencies as low as 2 Hz, we need to make
sure to have a long enough contact sequence to feed into the
MPC. For this reason, we use a tree horizon of 1 s.

Figure 6 shows the influence of the replanning frequencies
on the MPC tracking cost and the MPC prediction cost. The
figure shows that faster replanning improves the performance
until 12.5 Hz where it hits a plateau. Hence, in our setting,
12.5 Hz is selected as the MCTS replanning frequency to
be respected, which is also in line with a similar evaluation
presented in [6]. It should be noted that this update rate cannot
be reached, with the currently available computational power,
by the vanilla MCTS implementation described in Sec. II,
whose real performance is indicated with the stars in Figure 6.
Therefore, a significant speed-up is required to reach the
established replanning frequency.

IV. MCTS SPEED UP

In Sec. III, we presented the results of our ablation study on
the MCTS parameters. From this study, as depicted in Fig. 6,
we identified a minimum replanning frequency of 12.5 Hz to
achieve good system performance. Additionally, we concluded
that a greater number of simulations leads to a better MCTS
solution and robot’s performance. However, as shown in Fig.
4, increasing the number of simulations to better evaluate
each expanded node also increases the computation time. This
means that we can either allow the planner to perform more
simulations by lowering the replanning rate, or maintain the
minimum replanning frequency by limiting the MCTS to just 5
rollouts per expansion. Both of these solutions, however, limit
the performance of the vanilla MCTS, making its deployment
on real hardware extremely challenging.

In this section, we present a simple yet effective way to
overcome this issue. We propose a learning-based method to
reduce the number of MPC rollouts to be solved, with the goal
of making MCTS real-time on commonly available hardware
without a substantial decrease in performance. We also describe
our dataset generation process and the adopted architecture for
the learning-based method.

A. Dataset & Architecture

The dataset for the training process is generated in simulation
using the Raisim physics engine. We run the vanilla MCTS
method with the best-identified parameters in Sec. III, which
correspond to a dt of 0.08 s and 120 simulations. We trained
on flat and rough terrains while randomizing the velocity
commands, the step height, the robot’s mass, the swing
trajectory controller gains, and the robot’s height. Additionally,
we also perturb the system with randomly generated forces
in terms of magnitude, duration, and frequency. We log each
MCTS iteration input and output and use the nodes’ cost
estimates for training. This way, we collect a total of 26563
MCTS trees from the simulations.

A Multi-Layer Perceptron (MLP) with three hidden layers
of 512 neurons each, batch normalization layers, and dropout
regularization are used as the underlying architecture. We use
ReLU activation functions for the intermediate layers and
a linear activation function for the output layer. The Adam
optimizer [29] with a learning rate scheduler is used to optimize
the network’s weights.

B. Value Function Network

Given the computationally demanding cost of estimating
expanded nodes by solving several MPC rollouts, we propose
to learn a Value Function (VF) that approximates the cost-to-go
P̄n (Sec. II-C). The network’s input is defined as follows:

xvf = [zc,e,vc,e,Φe,ω
b
e, r, tswing, tstance, cn] ∈ R78

where zc,e is the error between the reference and actual CoM
height, vc,e is the error between the reference and actual CoM
linear velocity, Φe is the error between the reference and actual
base orientation, and ωb

e is the error between the reference
and actual base angular velocity. r comprises the actual foot
positions with respect to the CoM, tswing and tstance are the
actual swing and stance time of each leg in seconds, and cn
is the contact sequence that leads to the node n. If the node is
not terminal, we fill the missing part of the contact sequence
with −1 values, in order to make sure the input size to the
network remains the same.

Estimating a node’s cost with the proposed VF takes, on
average, less than 1 ms. This results in a substantial speed-up
over the QP-based evaluation, since a comparable performance
is only achieved with 120 simulations, which would take
approximately 20 ms if running 10 processes in parallel.

C. Combined Approach

Only relying on the learned value function to estimate P̄n (3),
can be detrimental when the states are out of the distribution
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of the training data. This is a well-known problem of imitation
learning [30] from offline data, and it is likely to happen during
the deployment of such networks in the real world. In this
work, we seek to obtain generalization through the combination
of model-based MPC rollouts solutions with the bootstrapping
obtained by employing the VF network.

Inspired by [30], we perform a simple update rule for the
node cost, such as

Pn = αP̄n + (1− α)P̄vf

with α being a heuristically chosen parameter, 0.75 in our
case. Note that, contrary to [30], we keep α fixed to allow the
robot to react in new situations. As we will see in the result
presented in Sec. V, α makes a trade-off between trusting the
learned VF and online MPC rollouts.

V. RESULTS

In this section, we present the evaluation of our proposed
method in simulation using the RaiSim physics engine and on
a real electric quadruped.

We perform several evaluations of our proposed method
in simulation. We first compare a vanilla MCTS gait planner
against two purely learning-based methods and our proposed
hybrid method, using the same evaluation method described
in Sec. III. Then, we present a quantitative analysis on the
impact of MPC rollouts on the proposed hybrid approach in
an extreme out-of-distribution (EOD) situation. Finally, we
conduct a comparison between our proposed hybrid method
against trotting gait sequences that assume periodic contact
timings with different step frequencies.

On hardware, using a real electric quadruped, we demonstrate
the pipeline’s disturbance rejection performance in comparison
to a fixed periodic gait. As highlighted in the accompanying
video, this is the first successful real-time implementation of a
sampling-based method for non-gaited locomotion. Moreover,
we perform a qualitative comparison between simulation and
hardware results.

For both simulation and hardware evaluations, we set a
maximum allowed time budget of 80 ms for the MCTS gait
planner in order to meet the 12.5 Hz replanning frequency
identified in Sec. III.

A. Simulation results

1) Baseline Comparison: we evaluate the following three
approaches against a vanilla MCTS gait planner baseline:

• VF
• Action Policy (AP)
• Combined Approach (5 QP + VF)

The first two methods are purely learning-based while the
third one is a hybrid approach that combines the learned VF
network with 5 model-based MPC rollouts. The AP outputs
the next optimal contact directly, thereby obtaining the full
sequence by successively querying the network. We add such
a method in the analysis to provide a complete insight into the
benefit of our proposed method. Both VF and AP share the

Fig. 7. Comparison of how the MPC tracking cost distribution varies, inside
(ID) and outside (OD) the learning distribution for different approaches. With
a green triangle, we showcase the mean MPC tracking cost. From left to right
we show the comparison between the MCTS Baseline against four purely
learning-based approaches based on VF and AP approaches for both ID and
OD scenarios, and a hybrid approach performing additional model-based MPC
rollouts with VF bootstrapping in an OD scenario. The blue points represent
the MPC tracking error samples for each approach. All proposed approaches
see an increase in the mean MPC tracking cost compared to the baseline of
11%, 12%, 195%, 484%, and 7% respectively.

same network architecture, a Multi-Layer Perceptron (MLP)
with three hidden layers of 512 neurons each.

We carry out a comparison, always in terms of MPC tracking
cost, on two different scenarios: Inside Distribution (ID) and
Outside Distribution (OD). In the ID case, we train two different
models for various target speeds while including, in the training
data, external disturbances to the robot base in the form of
pushes. On the other hand, in the OD case, we only train
the models with different target speeds without taking into
consideration any disturbance force. Figure 7 shows the results
for both scenarios.

In the ID scenario, both the VF and AP learning-based
models perform on par with the baseline in terms of mean and
variance of the MPC tracking cost. The mean MPC tracking
cost is almost identical between the three approaches, showing
a good overall approximation by the learning-based methods.
The MPC tracking cost distribution for both VF and AP tends
to reach higher peaks compared to the baseline, although being
within close range. Overall, for both purely learning-based
approaches, if they are trained on a diverse enough dataset
that covers the state space of the system, they show similar
performance as the baseline.

In the OD scenario, the learning-based models undergo a
substantial increase in the mean MPC tracking cost compared
to the baseline, with the VF showing a better performance
compared to AP. This is primarily because, in the case of
the VF, constraints are imposed during the expansion process,
whereas for the AP, they are integrated as part of the learned
behavior.

Observing the results for the third comparison, we see
that the combination of the VF with only 5 MPC rollouts
significantly lowers the mean MPC tracking cost and brings
back its distribution to a range similar to the baseline. This
demonstrates the benefit of our proposed hybrid approach in
OD cases, where a few QP model-based simulations can help
maintain a certain level of robustness and performance while
being capable of running at the desired replanning frequency.

2) MPC Rollouts Impact on the Hybrid Approach: Figure 8
shows the effect of the numbers of MPC rollouts on our
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Fig. 8. Comparison of how the MPC tracking cost distribution varies for an
extreme outside of distribution (EOD) scenario. From left to right we show
the comparison between the MCTS Baseline, using a tree discretization of
0.08 s and 120 simulations, against a pure VF learning-based approach, and
four hybrid approaches performing respectively 5, 10, 20, and 40 additional
model-based MPC rollouts with VF bootstrapping. The blue points represent
the MPC tracking error samples for each approach. With the * we mean a VF
trained according to the description in Sec. V-A2. All proposed approaches
see an increase in the mean MPC tracking cost compared to the baseline of
123%, 73%, 7%, 5%, and 44% respectively.

proposed hybrid approach in an EOD scenario. We compare
the hybrid approaches with an MCTS vanilla baseline and a
pure VF learning-based approach. The EOD scenario is set
such that the VF is trained only on data containing forward
velocities up to 0.5 m/s on a flat terrain, but we test on a
sloped terrain with a commanded forward velocity of 0.6 m/s
without exerting external disturbance forces.

The results, similar to Sec. V-A1, show how a pure VF
approach performs worse in OD scenarios compared to a hybrid
approach, where 5 MPC rollouts are performed. However, we
also note that increasing the number of MPC rollouts performed
in the hybrid approach does not necessarily lead to better system
performance. Since we enforce an optimal replanning frequency
of 12.5 Hz for all configurations, as found in Sec.III-C, the
hybrid MCTS has limited time available to return a solution.
This means that by increasing the number of simulations per
node expansion, the MCTS spends the majority of its time
estimating fewer node costs with MPC rollouts, leaving the
rest to be estimated using VF alone. Given our computational
resources, the average percentage of nodes evaluated with
MPC rollouts decreases from 39% with 5 rollouts per node to
27% for 40 rollouts. Consequently, the mean MPC tracking
cost improvement stagnates, showing only minor gains when
increasing the number of rollouts up to 20, while system
performance actually degrades with 40 rollouts.

In conclusion, increasing the number of MPC rollouts in the
hybrid MCTS is not always advantageous. A balance must be
found between using more rollouts per node to obtain fewer
but more accurate QP-based cost estimates or reducing the
number of rollouts to estimate less accurate costs across a
larger number of nodes.

3) Comparison with Periodic Contact Scheduling: Figure
9 presents a comparison of the mean lateral velocity and
respective confidence band between a non-gaited sequence,
obtained using MCTS, and two periodic trotting gaits: one with
a relatively low stepping frequency of 1.4 Hz and the other
with a higher stepping frequency of 2 Hz. For both frequencies,
we consider a step duty factor of 0.6 (ratio between the stance

Fig. 9. Comparison of the lateral velocity (the solid colors represent the mean
value and the shaded areas the confidence band) between two periodic trot
gait sequences with a respective step frequency of 1.4 Hz and 2 Hz against
our proposed MCTS gait planner. During walking, we apply a disturbance
at t = 0 s with a positive force of 150 N for 100 ms in the robot’s lateral
direction on a sloped terrain. We repeat the disturbance process 50 times for
each method. As shown in the plot, the MCTS results in an overall lower
lateral velocity after disturbance.

Fig. 10. On top, snapshots of the experiments on the Aliengo platform. On
the left, the robot used the presented MCTS gait planner. On the right, a
periodic trot with the same reference step frequency used by MCTS was used.
A punching bag let go from the same height pushes the robots in a repeatable
manner in both cases. In pink is the trace of the robot trunk, the smaller
the traveled distance, the better the disturbance rejection. On the bottom, are
the plots of the contact sequence chosen by the MCTS (solid color) and the
periodic gait (dashed line) for each leg, where we highlight in red the moment
of contact between the robot and the punching bag.

period and the whole step cycle period). The values shown in
Fig. 9 are obtained by pushing the system 50 times at time 0
s with a force of 150 N in the robot’s lateral direction for 100
ms while tracking a forward velocity of 0.3 m/s.

Our method and the 2 Hz trotting gait show a similar overall
performance. They both peak in terms of recorded lateral
velocity after 0.2 s from the moment of the push, with our
method having a slightly higher peak lateral velocity of 0.72
m/s compared to the 0.63 m/s for the 2 Hz trotting gait. On
the other hand, the 1.4 Hz trotting gait peaks only at 0.3 s
with a peak lateral velocity of 0.8 m/s.

In general, we also note how our proposed method is able
to bring the system back to zero lateral velocity at around
0.6 s which is significantly faster than the 0.72 s for the 2
Hz trotting gait and the 0.96 s for the slower 1.4 Hz trotting
gait. The superior performance of our method comes from its
ability to optimize both timing and gait sequence, enabling it
to outperform conventional periodic gaits.

B. Hardware Experiments

To validate the proposed method, we also performed tests
on real hardware. Thanks to the speed-up achieved by our
hybrid approach, we are able to reach the necessary replanning



8

rates for deployment on a real quadruped. We test the pipeline
on Aliengo, an electric quadruped robot made by Unitree
Robotics [31] that weighs around 22 kg. The entire pipeline
runs externally on a 12th-generation Intel i7 processor. In Fig.
10, we present some snapshots of the experiments while also
highlighting the contact sequence generated by the proposed
MCTS gait planner. To ensure the repeatability of the scenario,
the robot is pushed by a 27 kg punching bag hanging from a
crane. Our method, exploiting the MCTS gait adaptation, is
compared with a periodic approach where the robot trots at a
fixed frequency of 1.4 Hz and duty factor 0.6.

As shown in the diagram, the MCTS gait planner adapts the
contact sequence by keeping both left feet on the ground after
the impact to better counteract the push before returning to
the more efficient trotting frequency incentivized by the cost
in (3). The improved disturbance rejection can be observed by
the trajectory of the trunk’s position (illustrated by a pink line).
These results and further tests on the robot can be seen in the
accompanying video.

VI. CONCLUSIONS

In this work, we presented a novel approach for non-gaited
legged locomotion that extended the work in [19] by bringing to
the framework real-time capability and the first-ever successful
implementation on hardware of such a sampling approach. We
offered an extensive analysis of the parametrization of the
MCTS formulation for non-gaited locomotion and compared
it to standard control approaches that assume periodicity in
the gait sequence, ultimately showcasing the benefit of our
approach over such methods.

Future works will focus on integrating visual feedback into
our formulation combining it with a surface selection method
such as [21]. Furthermore, we aim to incorporate a more
complex but efficient robot model like the one used in [32]
to enable robust locomotion for multi-legged systems such as
quadrupeds and humanoids.
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