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Abstract— Quadrupedal robots excel in mobility, navigating
complex terrains with agility. However, their complex control
systems present challenges that are still far from being fully
addressed. In this paper, we introduce the use of Sample-Based
Stochastic control strategies for quadrupedal robots, as an alter-
native to traditional optimal control laws. We show that Sample-
Based Stochastic methods, supported by GPU acceleration, can
be effectively applied to real quadruped robots. In particular,
in this work, we focus on achieving gait frequency adaptation, a
notable challenge in quadrupedal locomotion for gradient-based
methods. To validate the effectiveness of Sample-Based Stochas-
tic controllers we test two distinct approaches for quadrupedal
robots and compare them against a conventional gradient-
based Model Predictive Control system. Our findings, validated
both in simulation and on a real 21Kg Aliengo quadruped,
demonstrate that our method is on par with a traditional
Model Predictive Control strategy when the robot is subject to
zero or moderate disturbance, while it surpasses gradient-based
methods in handling sustained external disturbances, thanks to
the straightforward gait adaptation strategy that is possible to
achieve within their formulation.

I. INTRODUCTION
The superior mobility of quadrupedal robots allows them

to navigate through uneven landscapes, climb obstacles, and
maintain stability on slippery surfaces, showcasing a level
of adaptability that closely mirrors the capabilities of their
biological counterparts [1]. However, the advantages offered
by quadrupedal robots come at the price of increased com-
plexity in designing and implementing effective locomotion
controllers. In recent years, the field of robotics has seen
a significant surge in the development of innovative control
solutions for legged robots, particularly quadrupedal systems
[2]. This advancement is fueled by the aim to realize sophis-
ticated locomotion strategies that are capable of seamlessly
adapting to diverse and challenging real-world scenarios.

The quest for advanced quadrupedal mobility has pushed
researchers to explore a variety of control methodologies,
from analytical optimization and Model Predictive Control
(MPC) [3] and purely end-to-end Reinforcement Learning
strategy [4] to cutting-edge machine learning strategies that
blend reinforcement learning with traditional optimization
techniques [5].

Sample-Based Stochastic (SBS) methodologies are rapidly
gaining traction [6] and represent a valid alternative to
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Fig. 1. The illustration depicts the application of a Sample-Based Stochastic
(SBS) predictive controller for gait generation in a quadrupedal robot. Each
gait sequence, sampled from a distribution, corresponds to a unique set of
control actions at various gait frequencies. These sequences are evaluated
based on their predicted cost over the forecast horizon. The most promising
sequences—referred to as the elite samples—are then used to update the
sampling distribution, optimizing the controller’s future action selections.

control mobile robots. This strategy diverges from traditional
control methods by relying on a distribution-based generation
and evaluation of a multitude of potential solutions sampled
from the search space, rather than exclusively depending on
gradient-based optimization techniques.

Historically, SBS optimization methods [7] have emerged
as a compelling alternative to analytical approaches in
instances where gradients are intractable or nonexistent.
These methods have proven particularly useful in robotic
applications where the complexity of the robot’s interac-
tions with its environment precludes the straightforward
application of gradient-based techniques. SBS methods can
uncover effective strategies for controlling robots in diverse
and challenging situations by sampling a wide range of
possible solutions and evaluating their performance. We
believe that adopting SBS control strategies in quadrupedal
robotics could represent a significant advancement, offering
a flexible and robust framework for developing locomotion
and maneuvering capabilities that can adapt in real-time to
the ever-changing demands of real-world environments.

Moreover, the widespread adoption of programming lan-
guages and libraries like JAX [8] opens up unprecedented
opportunities for implementing real-time SBS control solu-
tions in real robotics platforms. JAX is a high-performance
library designed for numerical computing, particularly well-
suited for the demands of parallel large-scale computation.

In this study, we show the application of GPU-accelerated,
SBS real-time controllers for quadruped robots, demon-



strating that SBS methods can match the performance of
traditional gradient-based controls while reducing controller
complexity. Furthermore, we highlight the SBS controller’s
adaptability by easily addressing challenges like gait fre-
quency adaptation, a persistent issue in quadrupedal loco-
motion research [9].

To summarize, our contributions are:

• The first implementation of a GPU-accelerated Sample-
Based Stochastic (SBS) control strategy for the direct
control of a 12 degrees of freedom quadrupedal robot,
fully integrated within a comprehensive locomotion
control framework.

• Introduction of a straightforward gait adaptation strat-
egy, illustrating the SBS’s ability to optimize robot
locomotion under external disturbances.

• A detailed comparative analysis of two SBS control
strategies against established gradient-based optimal
controllers, underscoring the practical advantages and
effectiveness of the SBS approach in real-world scenar-
ios.

• An open-source code repository1, for the rapid im-
plementation and testing of SBS control strategies for
quadrupedal robots.

The paper is organized as follows: Section II reviews related
works, providing a foundation and context for our research.
Section III delves into SBS control methods and their appli-
cation to the predictive case. In Section IV, we explore how
SBS predictive control methods can be effectively applied
for quadrupedal-legged locomotion. Section V presents the
experimental results, showcasing SBS controllers on a real
Unitree Aliengo2. Finally, Section VI concludes the paper,
summarizing our findings and suggesting directions for fu-
ture research.

II. RELATED WORKS

The challenge of achieving effective quadrupedal loco-
motion has traditionally been addressed through analytical
gradient-based methods. For instance, in the approach out-
lined by [3], the authors develop an optimal control strategy
based on linearized rigid body dynamics. This strategy
demonstrates the potential for practical application in real
quadrupedal robots. In [10] the authors employ a Nonlinear
Model Predictive Control (NMPC) to track retargeted ani-
mal motions, while in [11] the authors propose an NMPC
approach to traverse rough terrain using elevation maps input
to optimize footstep locations.

It is important to note that all these analytical methods
often depend on complex structures that require the presence
of external solvers, such as qpOASES [12], or HPIPM [13],
and gradient information. Even though all these methods
display great robustness derived from the inherent stability
of the optimal control framework, this strength is somewhat
offset by their lack of adaptability, stemming from the

1code repository: https://github.com/iit-DLSLab/Quadruped-PyMPC
2aliengo quadruped robot: https://www.unitree.com/products/aliengo

necessity for continuous and differentiable costs within their
formulations.

Another promising avenue for addressing locomotion chal-
lenges has been Reinforcement Learning (RL) strategies,
which have yielded impressive outcomes in various appli-
cations thanks to their ability to handle sparse rewards or
costs that are not differentiable. In [14] and [15] the authors
propose different RL policies for performing parkour-like
motions with real robotic quadrupeds. In [4] the authors
introduce an end-to-end RL policy for quadrupeds naviga-
tion. Despite the great results achieved by RL approaches,
a significant limitation is their lack of generalizability to
different tasks without undergoing comprehensive retraining.
This constraint means that for each new problem, the RL
model often requires a fresh training cycle, which can
be resource-intensive. Furthermore, the black-box nature of
these methods often presents challenges related to the safe
deployment of the policies in the real world.

SBS methods emerge as a powerful hybrid, merging the
precision of model-based analytical optimal control tech-
niques with the inherent adaptability of RL approaches.
These methods have shown remarkable potential in generat-
ing complex behaviors through a limited number of concur-
rent samples. For instance, in [6], [16], the efficacy of SBS
methods in creating sophisticated behaviors is demonstrated
only within simulated environments. Several studies have
validated the effectiveness of SBS methods on actual robotic
platforms [17], [18], highlighting their practical applicability.
In [19], the authors attempted to integrate a sample-based
controller with RL, but due to the platform’s simplicity and
its limited degrees of freedom, the application fell short of
a comprehensive locomotion scenario. Despite a wide array
of methods being successfully applied across various robotic
systems, there remains a noticeable gap in their application
to locomotion. Finally in [20], the authors introduce an SBS
strategy with an auxiliary policy for real-time operation due
to CPU limitations on sample size. Conversely, our GPU-
accelerated SBS controller allows for direct, real-time robot
control without such limitations.

III. SAMPLE-BASED STOCHASTIC
OPTIMIZATION

SBS methods, which have been utilized extensively in the
last decade in robotics applications [21], [7], often employ
the multivariate Gaussian distribution as the cornerstone
for exploring the parameters landscape. This distribution,
denoted as N (θ,C), where θ represents the mean and C
the covariance matrix, provides a probabilistic framework
for generating parameter samples. Within this context, it is
possible to identify a general structure for SBS optimization
as shown in Algorithm 1.

The process starts with the sampling phase, where K
samples θk=1...K are drawn from the multivariate Gaussian
distribution. Following the sample generation, an evaluation
and ordering steps are performed, where each parameter set
θk is evaluated using the cost function J (θk). The samples
are then ranked in ascending order of their cost values,



Algorithm 1 Generic iteration of Sample-Based Stochastic
optimizer

1: θk=1...K ∼ N (θ,C) ▷ Sampling
2: Jk = CostEval(θk) ▷ Evaluation
3: θk=1...K ,← sort(θk=1...K , Jk=1...K) ▷ Sorting
4: Jk=1...K ← extract sorted costs
5: Update:

• θnew = UpdateMean(θk=1...Ke
, Jk=1...Ke

)
• Cnew = UpdateCov(θk=1...Ke

, Jk=1...Ke
)

prioritizing those that indicate lower costs. Finally, in the
update phase, the algorithm refines the parameters of the
Gaussian distribution, concentrating on the ’elite’ samples.
This subset consists of the top Ke samples from the sorted
list, representing the most promising directions for further
exploration. The mean and covariance are updated to guide
the subsequent sampling toward more promising regions of
the parameter space. To converge to the optimal solution of
the cost function, it is necessary to execute these four phases
multiple times iteratively.

A. Sample-Based Stochastic Methods for Predictive Control
The essence of applying SBS methods lies in performing

a complete rollout over a certain horizon to compute the cost
function to optimize w.r.t. to the decision variables. Therefore
in the context of predictive SBS with a horizon of N steps,
the CostEval(·) function defined for computing Jk associated
with the kth sample becomes:

Algorithm 2 Rollout(θk)
1: for i = 0 to N − 1 do
2: ui = π(θk,xi, ti)
3: xi+1 = f i(xi,ui)
4: Jk = Jk + r(ui,xi,x

r
i )

5: end for
6: return Jk

where π(θk,xi, ti) represents a control policy that de-
pends on the sample decision variables θk, f i(xi,ui) repre-
sents the discretized dynamics of the system to be controlled,
r(ui,xi,x

r
i ) represents the one-step cost associated with

the current state-input pair, and xr
i defines the desired state

reference.
Using sampling-based methods in the context of MPC is

simple in practice because it does not require the use of any
optimizers, like HPIPM or qpOASES. Classical optimizers
often come with a host of practical challenges such as
scalability issues, handling discontinuities, and dependency
on gradient information. On the other hand, SBS methods,
being gradient-free, offer the flexibility to compute solutions
across a wide range of scenarios, including those with
discontinuities, which are particularly prevalent in multi-
contact systems.

Even though SBS methods are traditionally viewed as
sample-inefficient, this issue is greatly mitigated by lever-
aging the computational power of modern GPUs. This

parallelization does not only enhance efficiency, but also
allows for the randomization of other features of the control
problem. Such capabilities significantly expand the practical
applicability of SBS methods in MPC, as we will illustrate in
the subsequent section in the context of legged locomotion.

In a predictive control scenario, for the sake of efficiency,
we conduct just a single iteration of Algorithm 1 at every
time step. To enhance the search process for successive
iterations, we employ a strategy known as warm-starting.
This entails initiating each new search from the solution ob-
tained in the previous iteration. This significantly accelerates
the optimization cycle, ensuring that our methods remain
computationally viable even in scenarios demanding real-
time decision-making.

In this work, we employed two SBS predictive methods:
the Naı̈ve SBS optimizer and the Model Predictive Path
integral (MPPI) optimizer [22].

B. Naı̈ve SBS Optimizer
We introduced the Naı̈ve SBS method as a baseline to

demonstrate the effectiveness of SBS methods, even when
the algorithm’s structure is markedly simple. In this ap-
proach, we employ a straightforward UpdateMean(·) strategy
where, at each iteration, the chosen elite sample is always the
best-performing one. To maintain the algorithm’s simplicity,
we do not update the covariance from one iteration to the
next, leaving it unchanged. This decision to keep the co-
variance constant is crucial for sustaining robust exploration
capabilities, which we find to be highly beneficial in this
context.

A generic iteration of the Naı̈ve SBS Optimizer is sum-
marized in Algorithm 3, where with θ∗ we define the best
sample drawn during one iteration.

Algorithm 3 One iteration of the Naı̈ve Optimizer
1: θk=1...K ∼ N (θ,C)
2: Jk = Rollout(θk)
3: θk=1...K ← sort(θk=1...K , Jk=1...K)
4: Update:

• θnew = θ∗ ▷ Current best as new mean
• Cnew = C ▷ Covariance is unchanged

C. Model Predictive Path Integral Optimizer
The MPPI algorithm originates from fundamental opti-

mal control principles and derives its name from utilizing
the Feynman-Kac lemma. This approach reformulates the
Hamilton-Jacobi-Bellman (HJB) equations into evaluating an
expectation over all possible trajectories (or paths) that the
system could take, weighted by their performance of path
integral that can be effectively estimated using Monte Carlo
methods as shown in [22]. This weighting scheme reflects
the principle that trajectories leading to lower costs are more
likely to be close to the optimal path. The rollout weighting
procedure is defined as

ω̃i = exp

(
− 1

λ
· (Ji − β)

)
(ωi · θi)



Ω =

K∑
i=1

ω̃i θnew =

K∑
i=1

(ωi · θi)

where β = J1, λ = 1 represent respectively a normaliza-
tion factor and the temperature parameter of MPPI, ω̃i and
ωi = ω̃i

Ω represent the weight and the normalized weight
associated with each sample θi. A full representation of the
MPPI algorithm is shown in Algorithm 4.

Algorithm 4 One iteration of the MPPI Optimzer
1: θk=1...K ∼ N (θ,C) ▷ Sampling
2: Jk = Rollout(θk) ▷ Evaluation
3: θk=1...K ← sort(θk=1...K , Jk=1...K) ▷ Sorting
4: Jk=1...K ← extract sorted costs
5: Update:

• UpdateMean(θk=1...K , Jk=1...K)
• Cnew = C ▷ Covariance is unchanged

6: function UPDATEMEAN(θk=1...K , Jk=1...K)
7: β = J1 ▷ Best cost after sorting
8: λ = 1
9: Initialize ω̃i for each sample

10: for i = 1 to K do
11: ω̃i = exp

(
− 1

λ · (Jki
− β)

)
12: end for
13: Ω =

∑K
i=1 ω̃i

14: for i = 1 to K do
15: ωi =

ω̃i

Ω ▷ Normalize weights
16: end for
17: ωk=1...,K ← [ω1, . . . , ωK ]

18: θnew =
∑K

i=1(ωk=1...,K · θk=1...K)
19: end function

IV. LEGGED LOCOMOTION WITH SBS
PREDICTIVE CONTROLLER

In this section, we demonstrate the applicability of the
SBS predictive control framework to the problem of legged
locomotion. Specifically, we showcase the versatility of SBS
methods in extending beyond basic locomotion control to
optimize additional aspects of robot walking, such as gait
frequency, which is known to be complex to optimize within
a gradient-based approach in real-time [23].

Our proposed control architecture operates by sam-
pling K sets of decision variables, denoted as θ =
[θ1,θ2], at each time step. Here, θ1 controls the method
computeContactSequence(θ1) which generates different
gaits δ, whereas θ2 determines the behavior of the mapping
policy Γ = σ(θ2) that provides the input contact forces
Γ. To evaluate each parameter set θk, we calculate the
associated costs performing parallel rollout on the GPU.
For this, we employ a discretized model f(x,u, δ) based
upon the Single Rigid Body Dynamics (SRBD) to advance
the system dynamics over N steps and a single step cost
r(ui,xi,x

r
i ), which represent the tracking cost between the

reference state xr
i and the current system state xi. Follow-

ing this evaluation, we update the mean of the Gaussian

distribution N (θ,C), which is then passed to a low-level
control block that computes the robot’s torques. In parallel,
we compute the foothold reference where the robot needs to
step in, which is then passed to the next MPC control loop,
and the swing trajectory for the legs that are not currently in
contact with the ground. This separation of tasks is generally
adopted for controllers that utilize the SRBD model. More
details are provided in Section IV-A.

A depiction of the methodology is presented in the blocks
scheme in Figure 2, where with Leg Control Framework
we refer to the foothold and swing references, and the low-
level control computation routines described above. Finally, a
detailed description of the SBS predictive controller adapted
for legged locomotion is provided in Algorithm 5.

Algorithm 5 SBS Predictive Controller for Locomotion
Given:
x0 current state estimation
θk=1...K ∼ N (θ,C)
for each sample k (parallel GPU execution) do

Jk = Rollout(θk,x0) ▷ See Algorithm 2
end for
θk=1...K ← sort(θk=1...K , Jk=1...K)
[θnew

1 ,θnew
2 ] = UpdateMean(θk=1...Ke , Jk=1...Ke)

Cnew = C

function π(θ, tj)
[θ1,θ2]← θ
δj ← computeContactSequence(θ1)
Γj ← σ((tknot

1,...,P ,θ2,k), tj)
uj = [Γj , δj ]

end function

A. Model Formulation

This section outlines the model-based approach for a
quadrupedal robot used in the Rollout(·) function, adopting
a simplified Single Rigid Body Dynamics (SRBD) model
from [24]. This model focuses on the quadruped’s core
translational and rotational movements, omitting the swing-
ing legs’ dynamics. This is a suitable approximation since
the bulk of a quadruped’s mass is typically in its trunk.
The robot’s dynamics are described using two reference
frames: an inertial frame W , and a body-aligned frame C
at the Center of Mass (CoM), simplifying the inertia tensor
representation. The SRBD model is articulated through a
state representation in the CoM frame


ṗc

v̇c

Φ̇
ω̇

 =


vc

1/m
∑4

i=1 δiΓi + g
E′−1(Φ)Cω

−CI
−1
c (cω × CIc)C ω +

∑4
i=1 δiCI

−1
c Cpcf,i × CΓi


(1)

with m characterizing the robot mass subjected to grav-
itational acceleration g. Moreover, vc ∈ R3 and v̇c ∈
R3, respectively, depict the CoM velocity and acceleration.
The interaction between the robot and the environment is



 

Fig. 2. Block scheme of the proposed control method. From left to right: first, we command the robot with a user-defined reference, which is then passed
to the SBS controller that performs a parallel evaluation of the best control actions in GPU; concurrently, a leg control framework generates foothold
references, swing trajectories, and low-level control actions, considering the MPC solution.

mediated by the Ground Reaction Forces (GRFs) Γi ∈ R3

at each foot i, while the robot’s orientation and motion
dynamics are captured by the inertia tensor CIc ∈ R3×3

at the CoM and the base’s angular acceleration Cω̇ ∈ R3.
The positional relationship between the CoM pc ∈ R3 and
each foot i’s position pf,i ∈ R3 is denoted as pcf,i ∈ R3.
Φ = (ϕ, θ, ψ) represents the robot body orientation where
ϕ, θ, ψ, are the roll, pitch, and yaw respectively, while E′−1

is a mapping from the SRBD angles to Euler rates (see [24]).
To model the capacity of each foot i to exert contact forces,

binary parameters δi = {0, 1} are employed, indicating the
presence or absence of ground contact where the index i
indicates one of the four legs. The system’s state and control
are represented by vectors x = (pc,vc,Φ, Cω) and Γ =
(Γ1, . . . ,Γ4). The input to the system model can be defined
as u = [Γ, δ], making it possible to formulate the discrete
dynamics of the robot as:

xj+1 = f i(xj ,uj),

where δj encapsulates the contact state of all four legs at the
jth timestep, which normally, in model-based controllers, are
pre-computed to attain a tractable optimization problem (see
Section IV-C).

In the following, we show how we parametrize the GRFs
and the contact parameters δj to solve the aforementioned
control problem efficiently.

B. GRFs Parametrization

In this study, we implement a simple parametrization to
represent the actual control actions Γi for input into the
SRBD model over the prediction horizon N . The intro-
duction of this intermediate representation serves a dual
purpose: firstly, it enables the projection of the control vari-
able across the prediction horizon into a more manageable,
lower-dimensional space; secondly, it inherently ensures the

smoothness of the control actions. As in [6], our approach
utilizes cubic splines for this task. Specifically, within each
sample θk, the decision variable θ2,k ∈ RP represents a
time-indexed sequence of P knots, each allocated to specific
time instants tknot

1,...,P .
For any given input time t, the spline’s evaluation is then

determined as

Γ = σ((tknot
1,...,P ,θ2,k), t) (2)

and its output value is then constrained to respect friction
cone constraints to guarantee non-slipping conditions.

C. Gait Optimization

Gradient-based methods for legged locomotion often pre-
compute the contact status of each leg as a fixed vector
δ due to the challenges posed by Linear Complementary
Constraints, which complicate analytical gradient computa-
tions [25]. To address this, fixed periodic gaits like trot-
ting or pacing are commonly used for their simplicity and
effectiveness, despite the trade-off between robustness and
energy efficiency [26]. While some studies have attempted to
optimize gait periodicity using heuristics, these optimizations
typically occur outside the control loop [9], [27].

SBS controllers, however, are not limited by the con-
straints of gradient-based methods, allowing for the direct
optimization of gait parameters within the MPC framework.
A periodic gait is characterized by the step frequency fs and
the duty factor Df , defining the stance and swing times for
each leg as Tst =

Df

fs
and Tsw =

1−Df

fs
, respectively.

This work optimizes step frequency fs by discretizing it
over a fixed range and parametrizing it with θ1. The function
computeContactSequence(θ1) calculates lift-off events and
δ for the MPC horizon. To promote energy efficiency, we
introduce a regularization term in J for θ1 towards a nominal
stepping frequency.



D. Leg Control Framework

The outer control loop, operating concurrently with the
MPC, consists of three modules: a foothold reference gen-
erator, a swing reference generator, and a low-level torque
command module.

The foothold reference generator calculates the stepping
points for each leg using:

pf,i = phip,i +
Tst
2

vd
c +

√
pc,z

g
(vc − vd

c), (3)

where phip,i represents the hip position, vd
c the desired

velocity, and pc,z the height of the CoM. The last term in
(3) adjusts footholds for handling external disturbances.

Swing trajectories for legs in the air are generated by the
swing reference generator using cubic splines, linking lift-off
points to the touchdown points pf with a nominal stepping
height.

The low-level module translates Ground Reaction Forces
from Algorithm 5 into motor torques for stance legs as
τ st = −J⊤(q)Γ, and for swing legs using inertia, Jacobian
matrices, and PD control for foot trajectory adherence.

These components ensure dynamic, disturbance-
compensated locomotion with precise control over foot
placement and swing motion.

V. RESULTS

We validated our proposed controllers through simulations
and real-world experiments on the 21kg Unitree Aliengo
robot. We compared three controllers:

1) acados [28]: an optimization-based approach using the
same model from Section IV-A,

2) Naı̈ve Optimizer: described in Section III-B,
3) MPPI: detailed in Section III-C.
Their performance was evaluated under various distur-

bances in Mujoco simulations [29] and actual hardware tests.
All methods were tested with a horizon length of N = 12, a
discretization time of 0.02 seconds, and a trotting gait using
a nominal stepping frequency of fns = 1.3Hz. Acados ran
on an Intel 13700H CPU, while the SBS controllers utilized
an Nvidia 4050 mobile GPU that can draw a maximum of
30W of power, making it ideally suitable for being carried
directly on board a quadruped robot.

We used a quadratic cost function for defining the control
task

J = (x− xr)⊤Q(x− xr) + (u− ur)⊤R(u− ur),

where Q, R, are positive diagonal weighting matrices.
For gait optimization, we regularized the stepping fre-

quency towards a nominal, more energy-efficient value, using

J = J + ρ(θ1 − θr
1)

2,

with ρ as a scalar weight and θr
1 = fns . The variable θ1

ranged between [fns , 2.4]Hz, and sampled using a uniform
distribution. We choose to discretize for simplicity θ1 with
three different values, such as fns , 2.0, 2.4, with fns defining
a nominal more energy-efficient gait while 2.4 a more robust
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Fig. 3. Comparison between acados, naı̈ve optimizer, and mppi, command-
ing to the robot a forward linear velocity of 0.5 m/s. Top: box plot of the
computation time (SBS methods perform 10000 rollouts at each time step);
bottom: box plot of the tracking error. The box extends from the first to the
third quartile of the data, with the orange line and the green triangle that
depict the median and the mean values, respectively.

one, but a more fine-grained discretization step can be
employed at need.

A. Simulation Results without Gait Adaptation

We evaluated the computational efficiency and tracking
accuracy of each control method, with SBS methods op-
timizing over 10,000 rollouts. We aim to demonstrate the
practicality of SBS methods, benefiting from simple imple-
mentation without dependency on QP solvers, as detailed in
Section III-A. Simulations involved random external distur-
bances (wrenches within +/- 5N/Nm) applied to the robot
CoM with a duration of 2 seconds every 2 seconds.

Figure 3 shows competitive computational times for all
methods and slightly quicker execution for SBS approaches,
advantageous for minimizing control delays. In our case,
MPPI is faster than (2) since in the last we sample from
multiple Gaussian distributions. Tracking performance under
a forward velocity command of 0.5m/s was comparable
across methods, with acados (1) marginally outperforming
the Naı̈ve approach (2) and MPPI (3) as shown in Figure 3
thanks to the more fine-grained control action obtained by
exploiting the gradient information.
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Fig. 4. Comparison between acados and naı̈ve optimizer with gait
adaptation, under a strong lateral disturbance (40N) applied for 3 seconds.
Top: the CoM evolution under the two control laws, with the dotted line that
represents the position range (for the SBS method) in which the external
disturbance is applied to the robot; bottom: the step-frequency adaptation
profile achieved with the naı̈ve optimizer.

During our tests, we have observed that with a large
sample size, differences between methods (2) and (3) are
less noticeable, but become significant with fewer rollouts.
Hence, in the following, we compare acados and Naı̈ve
sampling for brevity.

B. Simulation Results with Gait Adaptation

The straightforward simplicity of sampling-based methods
and their capability of optimizing over zero-gradient infor-
mation, as explained in Section IV-C, make sampling-based
controllers an appealing method for legged locomotion. To
validate this claim, in Figure 4, we compare the CoM
trajectory of Aliengo using acados and naı̈ve sampling with
gait adaptation using a strong later push of 40N applied at
the CoM of the robot. In this simulation, we furthermore
commanded a lateral velocity of 0.1 m/s to the system.
As can be seen in Figure 4 (bottom), naı̈ve sampling can
optimize the stepping frequency at need, increasing the
overall robustness of the controller and avoiding the loss of
stability of the robot which occurs with the gradient-based
controller. In fact, after the application of the disturbance
at around second 2, the stepping frequency is automatically
increased, and after the disturbance vanishes (around second
4.2), the frequency is slowly restored to the nominal value
fns .

We confirmed this result statistically by analyzing the suc-
cess rate of methods (1), (2) with and without gait adaptation
over 50 different episode simulations, where we applied to

the robot CoM random wrench disturbances in the range of
+/- 20 [N,Nm]. In Table I, we report the obtained results,
showing that the gait adaptation strategy embedded inside
the SBS controller greatly increases the system’s capability
to prevent accidental falls and mean tracking errors. The
reader can refer to the accompanying video3 to visualize the
simulated results.

TABLE I
STATISTICAL ANALYSIS OVER 50 DIFFERENT EPISODES

Description Mean Cost Success Rate %

acados 0.12 32
naı̈ve sampling 0.14 37
naı̈ve sampling w/ gait adaptation 0.08 80

C. Experiment Results on Real Quadruped

The naı̈ve sampling controller was validated on the real
robot on two different gaits, such as trotting and pacing
(see the accompanying video). Furthermore, we replicated
the simulation results shown in Figure 4, perturbing both
acados and the sampling controller with strong lateral pushes.
As can be seen in Figure 5, we obtain a similar behavior
to the one achieved in simulation, with the sampling-based
controller able to modulate the step frequency at need. In
the accompanying video, we report on the same experiment
performed using method (1).

VI. CONCLUSION
In conclusion, this paper demonstrated the efficacy of

SBS control strategies for quadrupedal robots, offering a
robust alternative to conventional gradient-based controls.
Our study highlights the SBS methods’ success in real-
world applications, particularly in achieving real-time gait
frequency adaptation—a significant hurdle for gradient-based
approaches.

Comparative testing against traditional MPC approaches
underline the SBS controllers’ comparable performance un-
der minimal or moderate disturbances, and superior handling
of severe disturbances due to their flexible formulation that
allows the optimization of other controller aspects like the
gait frequency.

Future work will focus on applying SBS controllers with
the full dynamics of quadrupedal systems for direct torque
control and integrating visual feedback to enhance their
operational capabilities in complex environments.
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