
MPC-based Controller with Terrain Insight for Dynamic Legged
Locomotion

Octavio Villarreal, Victor Barasuol, Patrick M. Wensing,
Darwin G. Caldwell, and Claudio Semini

Submitted: 16/09/2019. Accepted: 22/01/2020.

To be published in:

International Conference on Robotics and Automation (ICRA) 2020.

To cite this paper:

O. Villarreal, V. Barasuol, P. Wensing, Darwin G. Caldwell, and C. Semini, ”MPC-based Controller with Ter-
rain Insight for Dynamic Legged Locomotion,” IEEE International Conference on Robotics and Automation
(ICRA), May 2020.

Video:
https://youtu.be/CqlLRdohFwM

For this and other publications from the Dynamic Legged Systems (DLS) lab:
https://dls.iit.it/dls-publications

c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.



MPC-based Controller with Terrain Insight for Dynamic Legged
Locomotion

Octavio Villarreal1, Victor Barasuol1, Patrick M. Wensing2, Darwin G. Caldwell3, and Claudio Semini1

Abstract— We present a novel control strategy for dynamic
legged locomotion in complex scenarios that considers infor-
mation about the morphology of the terrain in contexts when
only on-board mapping and computation are available. The
strategy is built on top of two main elements: first a contact
sequence task that provides safe foothold locations based on a
convolutional neural network to perform fast and continuous
evaluation of the terrain in search of safe foothold locations;
then a model predictive controller that considers the foothold
locations given by the contact sequence task to optimize target
ground reaction forces. We assess the performance of our
strategy through simulations of the hydraulically actuated
quadruped robot HyQReal traversing rough terrain under
realistic on-board sensing and computing conditions.

I. INTRODUCTION

Considering terrain morphology allows legged robots to
traverse more complex scenarios (e.g., [1], [2], [3]). Never-
theless, building a model of the terrain is often computation-
ally costly, mainly because of the dense nature of visual data.
On top of the mapping problem, feasible contact sequences
are needed to traverse the terrain safely. Computing these
contact sequences can also be costly [4], [5]. In general,
strategies that consider visual information of the terrain are
mostly focused on trajectory optimization [6], [7], [8], [9]. In
most approaches, contact sequences and the Center of Mass
(COM) trajectory are computed prior to the motion, or are
limited to (quasi-) statically stable gaits to not compromise
stability due to time constraints [2], [10], [11].

In this work, we combine the low computational time
from our previous Vision-based Foothold Adaptation (VFA)
strategy from [12] with a Model Predictive Control (MPC)-
based trunk controller. These two approaches are mutually
beneficial to each other. On one hand, we exploit the
computational gain that we obtain from the Convolutional
Neural Network (CNN) in the VFA strategy, to generate
safe contact sequences to be used in the MPC-based COM
tracking controller. On the other hand, the VFA benefits
from the MPC-based controller with respect to the foothold
prediction. A foothold prediction is a future landing position
based on the nominal trajectory of the legs and the trunk
velocity. We stress that the foothold predictions are different
from the state predictions computed using the MPC.

We start from the premise that optimizing ground reaction
forces (GRFs) accounting for future states using MPC will
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lead to better foothold predictions, since they depend both
on foot trajectories and robot states. If the robot states have
large acceleration peaks, the foothold prediction is affected
negatively. An improved selection of the desired GRFs would
reduce acceleration peaks, improving foothold predictions.
This allows the robot to handle more difficult scenarios, such
as changes in elevation and orientation, in a safer and more
reliable way, as demonstrated in simulations.

We perform simulations using the quadruped robot
HyQReal [13]. Its four legs weigh in total 48 kg (between
37% and 45% of the total weight of the robot, with and with-
out on-board hydraulic/electric power units, respectively).
This means that when fast motions are required, swing legs
play a significant role in the robot dynamics. In this paper,
we directly compensate for these effects by computing the
wrench on the body due to the desired joint accelerations of
the legs, improving state tracking and foothold prediction.

The result is a stable locomotion strategy, which is ro-
bust to a wide range of disturbances and is able to act
preemptively to obstacles based on visual information. We
summarize the contributions of this paper as follows:

• We devised a locomotion strategy that evaluates the
terrain, generates safe contact sequences and allows
for dynamic locomotion in difficult scenarios. The new
strategy displayed an improvement in foothold predic-
tion with respect to [12], reducing the prediction error
by a percentage between 7% to 36%.

• We combine a CNN-based foothold adaptation strategy
and an MPC-based trunk controller and show how
they mutually benefit from each other. To the best of
our knowledge, this is the first time that an MPC-
based locomotion controller uses the terrain geometry
in combination with a machine learning strategy.

• We improve the performance of the MPC, by compen-
sating for the wrench exerted by the legs during swing
phase due to the large weight of the legs with respect
to the total weight of the robot. This compensation
renders the model used for prediction in the MPC more
representative, since the leg inertia is handled separately,
further reducing the error in foothold prediction.

This paper is structured as follows: Section II summarizes the
previous work relevant to this research; Section III details the
methodology used to derive our locomotion strategy; Section
IV summarizes our results. Conclusions and future work are
presented in Section V.



Fig. 1: Left: schematic drawing describing the control strategy. The user commands are used by the foothold predictions, COM + reference,
and motion generation blocks (denoted with bold text). The contact sequence task is denoted by the orange blocks. The COM tracking
task is denoted by the red blocks. The RCF [14] (blue blocks) serves as an interface for the VFA, the MPC + leg inertia compensation
controller and a reactive layer for “blind” locomotion. The torque mapper block distributes the total wrench among the GRFs (solving
a QP similarly to [15]) and maps to joint torques using τττ = JᵀF. The white arrows connect the blocks where the MPC and the CNN
interact. Right: joint and leg definitions of HyQReal.

II. RELATED WORK

The spectrum of strategies when using MPC varies mostly
depending on the trade-off between model accuracy and
computational cost. The work of Di Carlo et al. [16] consid-
ers a simplified version of the centroidal dynamics model,
neglecting leg inertia, and ignoring the effects of non-zero
roll/pitch on the dynamics of the body. The optimization
problem is still convex and it is solved in real-time as a
Quadratic Program (QP). The strategy keeps the robot in
balance during a range of highly dynamic motions (e.g., trot,
bound, and gallop) on the Cheetah 3 robot [17]. Herein,
a feedforward torque compensates leg inertia to improve
swing leg trajectory tracking. Our work differs from this
implementation, since we compute the wrench exerted on
the trunk by the swing legs and compensate for it using the
GRFs of the stance legs to improve COM tracking.

Some other approaches tackle the trade-off between com-
putational cost and model accuracy by relying on reducing
the computational cost of the optimization problem solver. A
remarkable example is the one devised by Neunert et al. in
[18]. Their approach performs Nonlinear Model Predictive
Control (NMPC) and relies on a custom solver based on the
Iterative Linear Quadratic Regulator (iLQR) algorithm and
exploits automatic differentiation [19].

Using MPC has provided a systematic and robust way to
address the quadruped locomotion problem. Nevertheless, in
general it does not take into account future terrain within
the prediction. Instead, it reacts to the terrain and relies
on the fact that the continuous update of the state for the
initialization of the optimization provides enough robustness.
It is still challenging to leverage terrain information to
improve the performance of MPC strategies.

There are some trajectory optimization methods that con-
sider terrain information for quadrupeds. The method de-
vised by Winkler et al. in [7] is able to optimize gait,
COM trajectory and contacts on non-flat terrain based on
a simplified centroidal dynamics model using an off-the-
shelf Nonlinear Program (NLP) solver. In a similar fashion,
Aceituno et al. showcase a motion planning algorithm that
computes gait pattern, contact sequences and COM trajectory
as an outcome of a Mixed-Integer Convex Program (MICP)
on several non-planar convex surfaces in [20]. However, in

their work, either the trajectory is computed only once before
execution, or the terrain is assumed to be known and there
are no experiments with vision sensors during the motion.

The early works of Kalakrishnan et al. [1], [10] on
LittleDog pioneered methods to include vision sensors for
locomotion by relying on external motion capture systems.
Belter et al. [3] and Fankhauser et al. [2] devised control
architectures that allowed their legged platforms to traverse
complex scenarios only using on-board sensing enhanced
with vision, which were mostly demonstrated for statically
stable motions. In our previous work [12], we presented a
strategy that was able to adapt footholds based on a CNN.
The approach generated swing leg trajectory adaptations
in less than 0.1 ms. This allowed us to execute dynamic
locomotion in complex scenarios.

III. LOCOMOTION STRATEGY

Our goal is to produce robust and stable locomotion in
complex scenarios using terrain information provided by on-
board vision sensors. We combine MPC with a CNN-based
foothold adaptation strategy [12]. The combination of these
two strategies benefits each other.

State predictions in the MPC are computed using the
centroidal dynamics model and safe contact sequences are
based on the VFA. Future footholds can be continuously
computed by the VFA approximately every 0.5 ms, enabling
the MPC to reason about the effects of future contacts,
without having to consider them as optimization variables.
We then build upon these contacts to provide the reference
pose for the robot along the prediction horizon.

The block diagram shown in Fig. 1 describes our loco-
motion strategy. It entails three main elements: the contact
sequence task, the COM tracking task and the Reactive
Controller Framework (RCF) [14]. The contact sequence task
provides the future contact locations according to the robot
current states and the gait timing parameters. The COM
tracking task is in charge of both generating and following a
COM trajectory according to the contact sequence task, the
current robot states, and the gait parameters. We use the RCF
[14] as controller interface. This modular framework allows
us to combine the RCF reactive layer block in Fig. 1 with
our vision-based strategy. This layer is comprised by several



modules that allow the robot to perform robust locomotion in
rough terrain only using proprioception. The RCF combines
these reactive modules with the MPC and the VFA.

The user commands are: forward velocity V f ∈ R2 (x
and y velocities), yaw rate ψ̇re f ∈ R, duty factor D f , step
frequency fs and gait G. V f and ψ̇re f are provided via
joystick commands. The rest of the parameters are preset by
the user according to the desired gait and range of speeds.

Below we explain the two main elements of our strategy:
the contact sequence and the COM tracking tasks.

A. Contact Sequence Task

We extend the use of the VFA [12] to provide the subse-
quent eight reference footholds (two strides). These footholds
are used to generate the COM reference trajectory and
provide the contacts for the model described in Section III-B.

a) Vision-based Foothold Adaptation: The purpose of
the VFA is to continuously compute adjustments for the
trajectory of the feet in order to avoid collisions and un-
safe or unreachable landing positions. For a more detailed
description on this method we refer the reader to [12].

For a leg in swing phase, we initially compute a prediction
of its landing position based on the current velocity of the
trunk (taken from the state estimator) and the trajectory of
the foot (in our case a half-ellipse) using the approximation:

p̂i = p̄i +
1
2
`̀̀s +∆tiṙ (1)

where p̂i ∈ R3 is the predicted foothold of i-th leg, for i =
1, ..., l, with l being the total number of legs (see Fig. 1),
p̄i ∈R3 is the center of the ellipse, ∆ti is the time remaining
to the next stance change, `̀̀s ∈ R3 is the step length vector,
and ṙ∈R3 corresponds to the velocity of the base. All vector
variables are given in world coordinates. In the case of the
next touchdown of a swing leg, ∆ti =

1−D f
fs
− tsw,i, where

D f is the duty factor, fs is the step frequency and tsw,i is
the elapsed swing time since the latest lift-off. The first two
terms in (1) are related to the leg trajectory, while the third
term is related to the displacement of the base.

After computing the prediction of the next foothold, a
2D representation of the terrain around that foothold is
acquired, namely a heightmap. We pre-train a CNN to learn
the optimal footholds from heightmaps [12] considering
collisions, terrain roughness, and process uncertainty. The
architecture of the CNN is designed as a trade-off between
prediction accuracy and speed. The CNN takes on average
0.1 ms to evaluate a heightmap and output a safe foothold.
This fast computation time allows us to continuously adapt
the trajectory of the swing leg to reach the adapted foothold.

b) Reference Contact Sequence: We use the computa-
tional gain obtained by the VFA to evaluate further ahead
in the terrain. Knowing that the gait is periodic and defined
by the step frequency fs and the duty factor D f , we can
estimate the timings for the non-immediate foot contacts.
Using these timings, one can compute the predicted foothold
locations for each of the legs at every stance change (lift-off
or touchdown) replacing them for ∆t in (1). We then use

our CNN-based foothold adaptation to adjust the predicted
foothold location. This calculation is done for the next two
gait cycles (eight contacts in total and 16 stance changes). An
example of a safe foothold sequence can be seen on the right
side of the series of snapshots of Fig. 2. Namely, pi[κ] is the
contact location of leg i at stance change κ , for κ = 0, ...,16.
In (1), ṙ is assumed constant in between stance changes.

The CNN continuously provides safe contact sequences at
task frequency (250 Hz). These sequences are used both as
future foot positions and to inform the MPC controller to
improve the COM regulation, as explained in Section III-B.
This interaction is shown in Fig. 1. One key feature of the ap-
proach is that safe footholds are computed without including
them as optimization variables in the MPC controller, which
significantly decreases the complexity of the problem.

B. COM Tracking Task

a) COM Reference Generation: To provide the refer-
ence trajectory for the COM along the prediction horizon,
we compute its location at every stance change based on the
desired gait timings using fs and D f . For two gait cycles,
there are a total of 16 stance changes, so we compute a total
of 16 COM positions. Similarly to the third term of (1), we
compute the reference yaw using the desired yaw rate as

ψre f [κ] = ψ +∆t[κ]ψ̇re f (2)

where ψre f [κ] ∈ R is the yaw reference at stance change
κ , for κ = 0, ...,16, ψ ∈ R is the current yaw, and ∆t[κ] is
the time for a stance change to happen from κ = 0. Using
the reference for the yaw angle, we compute the reference
position of the COM with respect to the world

rre f [κ] = r+∆t[κ]Rz(∆ψ[κ])ṙre f (3)

where rre f [κ] ∈ R3 is the reference position for the COM
at stance change κ , Rz(∆ψ) ∈ R3x3 is the rotation matrix
around the z axis about ∆ψ[κ] (with ∆ψ[κ] = ψre f [κ]−ψ)
and ṙre f is the reference velocity obtained from V f and ψ̇re f .
This provides the reference for the next x and y positions of
the COM with respect to the world.

The reference for the body roll φre f and pitch θre f relies on
the contact configuration at each stance change. We estimate
the orientation of the terrain and define that orientation
as reference for the body. We also use the contacts to
define a height z reference position for the body (namely,
rre f ,z[κ]), setting it to remain at a constant distance from the
center position of the approximated plane in the direction
of the z world axis. To obtain ṙre f ,z[κ], φ̇re f [κ] and θ̇re f [κ]
we derive numerically between samples of rre f ,z[κ], φre f [κ]
and θre f [κ], respectively. Finally, we evenly sample the 16
reference points given by the stance changes, filling the gaps
in between samples using a zero-order hold (ZOH). We
define a reference vector at evenly sampled time k as

xre f [k] =
[
Θ>re f [k] r>re f [k] Θ̇>re f [k] ṙ>re f [k]

]>
(4)

with Θre f [k] =
[
θre f [k] φre f [k] ψre f [k]

]> and rre f [k] =[
rre f ,x[k] rre f ,y[k] rre f ,z[k]

]>. Figure 2 shows multiple COM



references.
b) Dynamic Model: Our MPC trunk balance controller

is inspired by the work of Di Carlo et al. [16]. We model the
robot as a rigid body subject to contact patches at each stance
foot and we neglect the effects of precession and nutation
as in [15]. However, there are two key differences in our
approach: firstly, we do not define the reference roll and
pitch angles to be zero. Additionally, although we do not
explicitly consider the leg inertia in our model for control,
we compensate for it by computing the wrench exerted by the
legs using the actuated part of the joint-space inertia matrix
and the desired accelerations of the joints. We explain how
this is done by the end of this section.

The dynamics of the rigid body and its rotational kine-
matics are given by

r̈ = ∑
l
i=1 Fi

m
+g (5)

Iω̇ =
l

∑
i=1

pi×Fi (6)

Ṙ = [ω]×R (7)

where r ∈ R3 is the position of the COM, Fi ∈ R3 is the
GRF at foot i, m ∈ R is the robot mass, g ∈ R3 is the
gravitational acceleration, I∈R3×3 is the inertia tensor of the
robot, pi ∈R3 is the i-th foot contact position, R∈R3×3 is the
rotation matrix from body to world coordinates according to
roll φ , pitch θ and yaw ψ angles and ω ∈ R3 is the robot’s
angular velocity. The operator [x]× is the skew-symmetric
matrix such that [x]×y = x× y. In (6) we are neglecting
precession and nutation effects, namely ω × Iω ≈ 0. We
rewrite equations (5), (6) and (7) in state-space represen-
tation. Initially, from (7) we can obtain the angular velocity
in terms of the body’s Euler angles from

[ω]× = ṘR> (8)

which can be rewritten as

ω = T(Θ)Θ̇ (9)

where Θ = [φ θ ψ]> and T(Θ) is the matrix that maps from
Euler angle rates to angular velocities. The only condition
on T(Θ) to be invertible is θ 6= π/2, which in practice does
not happen (it implies that the robot is pointed vertically).
Thus, the angular rate can be obtained as

Θ̇ = T−1(Θ)ω (10)

We define state vector1 x = [Θ> r> ω> ṙ> g>]> and
rearrange (5), (6) and (10) to write them in state-space as

ẋ(t) = A(Θ)x(t)+B(Θ,pLF , ...,pRH)u(t) (11)

where u is the vector of GRFs. Note that no assumptions are
made about the orientation of the robot2 (except for θ 6= π/2)
and we explicitly denote the dependence of T and I on Θ.

In a similar fashion to [16], we approximate the dynamics

1Herein, g is appended in the state vector to reach the form given in (11)
2If θ u φ u 0 then: ẋ(t) = A(ψ)x(t)+B(ψ,pLF , ...,pRH)u(t)

in (11) to a discrete-time linear system. Namely, for each
reference vector xre f [k] (for k = 1, ...,n, where n is the
prediction horizon length), we compute the approximate
linear, discrete system matrices Ad [k] and Bd [k].

We first substitute the feet locations pi obtained from
the contact sequence task into B(Θ,pLF , ...,pLH) for every
contact configuration at time instant k. However, A(Θ) and
B(Θ,pLF , ...,pLH) are still dependent on the body orientation
(in a nonlinear fashion). To obtain the linear, discrete time
versions of these matrices, we follow a similar argument to
[16]. Assuming that the MPC-based controller will follow
sufficiently close the reference trajectory given by xre f [k], we
substitute the values of Θre f [k] into system matrices A(Θ)
and B(Θ,pLF , ...,pLH). We also consider the values of θre f
and φre f computed by the COM reference trajectory. We then
discretize the system matrices using a ZOH. The discrete-
time linear system dynamics can be described as

x[k+1] = Ad [k]x[k]+Bd [k]u[k] (12)

c) Model Predictive Control: We can obtain a discrete
time evolution of the system by successive substitution of
states x[k] into (12) to obtain the state evolution from k = 0
to k = n. Then, we can describe the dynamics as

X = Āx0 + B̄ū (13)

where X ∈ R15n is the stacked vector of states along the
prediction horizon X =

[
x>[1], ..., x>[n]

]>, Ā ∈ R15n×15n

and B̄ ∈ R15n×12n are the matrices built by successive
substitution, x0 ∈ R15 is the actual robot state vector and
ū ∈ R12n is the stacked vector of ground reaction forces
ū =

[
u>[0], , ..., u>[n−1]

]>. We formulate the optimiza-
tion problem to minimize the weighted least-squares error
between the states and the reference along the prediction
horizon. We enforce the gait pattern G and friction consis-
tency by setting appropriate constraints. We solve

min
ū

∥∥X−Xre f
∥∥2

L +‖ū‖2
K

subject to −µūz ≤ ūx ≤ µūz −µūz ≤ ūy ≤ µūz

umin ≤ ūz ≤ umax G(G)ū = 0 (14)

where Xre f ∈ R15n is the stacked vector of desired states
along the prediction horizon3, vectors ūx ∈R4n, ūy ∈R4n and
ūz ∈R4n correspond to the components of vector ū associated
to x, y and z, respectively, of the GRFs, µ ∈R is the friction
coefficient, umin ∈R4n and umax ∈R4n are the limits on the z
component of ū, matrix G∈R12n×12n is a matrix that selects
the components of the GRFs that are in contact according to
gait G, and matrices L and K are weighting matrices. This
optimization problem is a QP and can be efficiently solved by
several off-the-shelf solvers. After solving (14), we compute
the desired wrench coming from the MPC as

wMPC =
l

∑
i=1

[
pi×F∗i

F∗i

]
(15)

3We redefine xre f [k] = [Θ>re f [k] r>re f [k] (T(Θre f [k])Θ̇re f [k])> ṙ>re f [k] g>]>
to match the state definition of x



where F∗i is the optimized GRF of foot i, extracted from the
first 12 entries of the optimized control input vector ū∗.

d) Leg Inertia Compensation: The MPC model used for
prediction neglects leg inertia. This assumption is acceptable
for quasi-static motions. However, if the leg-body weight
ratio is significantly large, the wrench exerted by the legs on
the body plays a significant role in the dynamics. We com-
pensate for these effects in a simple, yet effective, manner.
The floating-base dynamics of a robot can be described by[

Mu Mua
Mau Ma

][
v̇
q̈ j

]
+

[
hu
ha

]
=
[ 0
τ j

]
+

[
J>c,u
J>c,a

]
F (16)

where v ∈ R6 is the floating-base robot velocity, q ∈ Rn j is
the joint configuration, Mu ∈ R6×6 and Ma ∈ R6×n j are the
direct un-actuated and actuated parts of the joint-space inertia
matrix, whereas Mua ∈ R6×n j and Mau ∈ Rn j×6 correspond
to the cross terms between actuated and un-actuated parts
of the joint-space inertia matrix, hu ∈ R6 and ha ∈ Rn j are
the un-actuated and actuated vectors of Coriolis, centrifugal
and gravitational terms, τ j ∈ Rn j is the vector of joint
torques, Jc,u ∈ Rnc×6 and Jc,a ∈ Rnc×n j are the un-actuated
and actuated contact Jacobians and F is the vector of GRFs.
The matrix Mua maps the joint accelerations to the robot
spatial force acting on the floating-base of the robot, namely

wl = Muaq̈ j (17)

In (17), the wl can be computed directly using measurements
coming from the sensors. However, using the actual joint
acceleration might lead to high frequency wrench signals.
Instead, We use the desired joint acceleration q̈ j,d coming
from the torque mapper (see Fig. 1). Then, the leg inertia
compensation wrench is given by wl = Muaq̈ j,d . Thus, the
total desired wrench is given by wd = wMPC +wl

4.

IV. RESULTS

We performed simulations on HyQReal [13], a hydrauli-
cally actuated quadruped robot. The leg configuration of the
robot is shown in Fig. 1. We use Gazebo [21] to perform our
simulations. Control commands are executed at a frequency
of 250 Hz. Wrench values from the MPC controller wMPC are
sent at a maximum frequency of 25 Hz and we use a ZOH
in between control signals. The prediction horizon is set to
comprise 2 gait cycles, partitioned in 20 samples. We solve
the QP in (14) with a modified version of uQuadProg++ [22]
to work with the C++ linear algebra library, Eigen. The signal
wMPC is computed at 25 Hz to give enough time to the solver
to compute a feasible solution. The leg inertia compensation
wrench wl is computed at task frequency. The mapping is
done using the Grid Map interface from [23]. Weighting
marices are chosen as L = 115n and K = (1× 10−9)112n,
where 1a defines the a×a identity matrix.

Simulations
We perform three different simulations to assess the im-

provements in foothold prediction and locomotion robust-

4This total wrench is distributed between the contact feet using the torque
mapper shown in Fig. 1 [15]

TABLE I: Root mean square and maximum absolute value
of the foothold prediction error

LF RF LH RH

QP+LI+GC RMS(e) 0.012 0.012 0.012 0.012
max |e| 0.095 0.095 0.088 0.082

MPC+IC RMS(e) 0.009 0.007 0.007 0.009
max |e| 0.0740 0.0611 0.0604 0.0761

ness. Below we explain in detail the outcome of these tests.
a) Leg Inertia Compensation: We perform simulations

commanding the robot to trot on flat terrain with a forward
velocity V f of magnitude 0.5 m/s, a step frequency fs of
1.4 Hz, and a duty factor D f of 0.6. We start the simulation
with our previous trunk controller [15]. We keep V f and
change the controller configuration as the robot continues
to trot. There are six possible configurations shown in
Fig. 3, which combine the following control components:
1) QP: standard QP trunk controller 2) LI: stance leg joint
impedance (PD controller at joint level) 3) GC: gravity
compensation 4) IC: leg inertia compensation and 5) MPC:
model predictive controller. Figure 3 shows the error in
velocity with respect to the commanded V f for one of the
trials. The vertical dashed red lines indicate the moments
when the controller configuration was changed. We check
six different configurations, although we would like to stress
that configuration C3 (see Fig. 3) acts merely as a a transition
between the standard QP and the MPC. This is because the
MPC controller already compensates for the gravitational
effects in the model. It can be noticed that when the inertia
compensation wrench is applied, the accelerations of the
body are greatly reduced. The best performing configuration
corresponds to the configuration C5 (fifth portion of graph
in Fig. 3). Under this configuration, the robot dynamics
resemble more those of the MPC model (which neglects leg
inertia), since the leg inertia is being accounted for outside
of the optimization. C2 presents larger errors in velocity
tracking, but its response is smoother with respect to C5.
The sharp changes in velocity in C5 could be reduced by
carefully choosing the weights in K and L of (14).

b) Foothold Predictions and Robustness in the Presence
of Disturbances: For the second simulation, the robot is
also commanded to trot on flat terrain with the same gait
parameters as in the first simulation. This time, we perturb
the robot three times with 700 N of force with a duration
of 0.1 s. Table I shows the root mean square (RMS) error
and the maximum absolute value of the foothold prediction
error for this simulation. The table helps us to compare
the previous controller configuration with the MPC-based
controller with leg inertia compensation. The RMS prediction
error when using MPC and leg inertia compensation is
between 25% and 41% less with respect to the previous
controller configuration. This represents between 3 mm and
5 mm of improvement. However, even if the average of
the error is low in both cases, a single wrong prediction
compromises the robot stability. The maximum absolute
value of the error is more representative of the reliability of



Fig. 2: Left: series of snapshots of the HyQReal robot moving through the scenario. Blue spheres correspond to the position of the center
of mass at the moment when the snapshot was taken and the red spheres show the reference position for the COM along the prediction
horizon. The positions of the feet are indicated by the colored dashed lines. The elevation map is built using the vision sensors. Right:
scenario designed to test the locomotion strategy proposed in this paper. Each beam is 15 cm height and 20 cm wide. Beams 1 to 4 and
11 to 14 are located at ground level. Beams 5 to 7 and 10 are located 15 cm above ground level. Beam 8 is located 12 cm above ground.
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Fig. 3: Velocity with different control strategies. The red dashed
lines indicate the moments when the configuration was changed.
The controller configurations are: C1 = QP + LI + GC; C2 = QP
+ LI + GC + IC; C3 = QP + LI + IC; C4 = MPC + LI + IC;
C5 = MPC + IC; C6 = MPC. The abbreviations stand for: a) QP:
standard QP trunk controller, b) LI: stance leg joint impedance, c)
GC: gravity compensation, d) IC: leg inertia compensation and, e)
MPC: model predictive controller.

the prediction under disturbances. In this case, the reduction
of the error is between 7% and 36%. This represents between
0.6 cm and 3 cm of reduction of the foothold prediction error
when using the MPC with the leg inertia compensation.

c) Locomotion on Challenging Terrain: To verify the
improvement in performance regarding locomotion on diffi-
cult terrain, we designed the scenario in Fig. 2. The robot
is commanded to trot with a forward velocity of 0.4 m/s, a
step frequency of 1.4 Hz and a duty factor of 0.6. We use
the VFA to select appropriate footholds with two different
control configurations 1) QP + LI + GC (C1) and 2) MPC
+ IC (C5). To test the performance repeatability we did four
trials with each configuration. Figure 4 shows the pitch angle,
forward velocity, body height and an example of the foot
trajectories for one of the trials with configuration C5. Figure
2 shows 11 overlapped snapshots of the RVIZ visualization
as the robot crosses the scenario, builds the map, and adjusts
its footholds on the fly. Figure 2 also shows the reference
trajectory of the center of mass given at the specific moment
when the snapshot was taken, and the foot trajectories as the
robot moves through the scenario.

Figure 4 shows that all four different trials using configura-
tion C5 were successful and the variations in linear velocity,
pitch and body height are significantly reduced with respect
to C1. For this last configuration, the robot was not able to
reach the end of the scenario in any of the trials, mainly due
to errors in foothold prediction and variations on the body
velocity. This task shows the mutual benefits between the
VFA and the MPC. The foothold prediction error is reduced
when using the strategy here presented. Specifically, in the
case of the MPC + IC, for all four trials and all legs, the
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Fig. 4: Results for the scenario crossing simulation. The top three
plots show pitch angle, velocity error, and body height. Blue lines
correspond to trials with configuration C1 and red lines correspond
to C5. Foot trajectories corresponding to one of the succesful trials
are shown at the bottom part of the figure.

maximum absolute value of the error in foothold prediction
was 10 cm, while in the case of the previous configuration
the error was 14 cm.

V. CONCLUSIONS AND FUTURE WORK

We developed a dynamic locomotion strategy to traverse
difficult terrain using visual information only coming from
on-board sensors. We based this strategy on the combination
of an MPC-based controller and a CNN-based foothold
adaptation scheme (namely the VFA). We showed that the
interaction between these approaches is mutually beneficial
and improves locomotion reliability and robustness. We also
demonstrated that considering a compensation term account-
ing for the wrench due to the inertia of the legs improves the
performance of the MPC-based controller, due to a closer
resemblance to the model used for state prediction. The
various simulations validated these improvements. A major
limitation is related to the maximum frequency at which the
MPC controller can be computed. For the current prediction
horizon length, this is limited to 25 Hz. As future work, we
plan to validate the strategy developed here in experiments
with the hydraulically actuated quadruped robot HyQReal.
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